Monomerisaation vaikutus Deinococcus radioduransin fytokromiin

Fytokromit ovat yksi kolmesta fotomorfogeneesiä säätelevistä proteiiniperheistä. Niitä löytyy kasveista, bakteereista ja sienistä. Fytokromit reagoivat ympäristön muuttuviin valaistusolosuhteisiin, ja niiden tehtäviin kuuluvat muun muassa kasveilla siementen kehittymisen ja bakteereilla solusyklin s...

Full description

Bibliographic Details
Main Author: Linna, Marko
Other Authors: Matemaattis-luonnontieteellinen tiedekunta, Faculty of Sciences, Bio- ja ympäristötieteiden laitos, Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylän yliopisto
Format: Master's thesis
Language:fin
Published: 2014
Subjects:
Online Access: https://jyx.jyu.fi/handle/123456789/43347
_version_ 1828193117568761856
author Linna, Marko
author2 Matemaattis-luonnontieteellinen tiedekunta Faculty of Sciences Bio- ja ympäristötieteiden laitos Department of Biological and Environmental Science University of Jyväskylä Jyväskylän yliopisto
author_facet Linna, Marko Matemaattis-luonnontieteellinen tiedekunta Faculty of Sciences Bio- ja ympäristötieteiden laitos Department of Biological and Environmental Science University of Jyväskylä Jyväskylän yliopisto Linna, Marko Matemaattis-luonnontieteellinen tiedekunta Faculty of Sciences Bio- ja ympäristötieteiden laitos Department of Biological and Environmental Science University of Jyväskylä Jyväskylän yliopisto
author_sort Linna, Marko
datasource_str_mv jyx
description Fytokromit ovat yksi kolmesta fotomorfogeneesiä säätelevistä proteiiniperheistä. Niitä löytyy kasveista, bakteereista ja sienistä. Fytokromit reagoivat ympäristön muuttuviin valaistusolosuhteisiin, ja niiden tehtäviin kuuluvat muun muassa kasveilla siementen kehittymisen ja bakteereilla solusyklin säätely. Luonnossa fytokromi esiintyy homodimeerinä. Fytokromin perusrakenne koostuu kromoforin sisältävästä fotoreseptorialueesta sekä signalointialueesta, joka välittää tiedon valaistusolosuhteiden muuttumisesta solussa eteenpäin. Tässä tutkielmassa käytetyn Deinococcus radiodurans -bakteerin bakteerifytokromin fotoreseptorialueen runko rakentuu Per/Arndt/Sim (PAS) ja cGMP fosfodiesteraasi/adenyylisyklaasi/FhlA (GAF) -domeeneista, jotka muodostavat yhdessä kromoforin sitoutumistaskun sisältävän domeenin (cromophore binding domain, CBD). CBD:iin on kiinnittynyt tetrapyrroli biliverdiini. Fotoreseptorialueeseen kuuluu lisäksi fytokromiin liittyvä domeeni (phytochrome-specific domain, PHY), joka on kiinnittynyt GAF-osaan. Fotoreseptorialue on puolestaan liittynyt histidiinikinaasina toimivaan signalointialueeseen. Fytokromi toimii luonnossa kytkimenä, jolla on lepotila Pr ja valottunut tila Pfr. Valottuminen tapahtuu, kun Pr-tilaisen fytokromin tetrapyrroli absorboi punaista valoa. Tämän seurauksena tetrapyrrolin muoto muuttuu vaikuttaen samalla koko fytokromin laskostumiseen. Pfr-tilasta fytokromi palautuu takaisin Pr-tilaan joko absorboimalla pitempiä aallonpituuksia tai spontaanisti pimeäpalautumiseksi kutsutussa reaktiossa. Tutkimuksessa pyrittiin selvittämään vaikuttavatko monomerisaatio ja PHY-domeenin lisääminen CBD:n fysikaalisiin ja spektroskopisiin ominaisuuksiin. Tutkimusta varten tuotettiin sekä CBD:n että CBD-PHY:n dimeeri- ja monomeerimuotoa. Fytokromikonstruktit analysoitiin korkean erottelun nestekromatografia-kokoa erotteleva kromatografia -mittauksilla sekä UV-VIS -spektroskopialla. Saaduista tuloksista on havaittavissa, että CBD:n dimeeri- ja monomeerimuotojen välillä on merkittäviä fysikaalisia eroja. Korkean erottelun nestekromatografia-kokoa erotteleva kromatografia -mittausten tuloksista voidaan todeta, että monomeerimuodon laskostuminen Pfr -tilassa on mahdollisesti joustavampi kuin dimeerimuodon. Myös monomeerimuodon spektroskooppiset ominaisuudet poikkeavat dimeerimuodon ominaisuuksista. Monomeerimuoto valottuu dimeerimuotoa täydellisemmin Pfr-tilaan, ja pimeäpalautuminen on huomattavasti hitaampaa. PHY -domeenin lisäys CBD:iin muuttaa fytokromin spektroskopisia ominaisuuksia että stabiiliutta. CBD-PHY:n dimeeri- ja monomeerimuodot valottuivat CBD:tä paremmin Pfr-tilaan, ja etenkin monomeerimuodon pimeäpalautuminen on lähes täysin estynyt. Saadut tulokset osoittavat PHY -domeenin olevan kriittinen tekijä CBD:n stabiloinnissa. PHY-domeenin liittäminen CBD:n mahdollistaa viritystilan säilyttämisen, joka on tärkeää tutkittaessa mahdollisia käytännön sovelluksia. Esimerkki mahdollisista käytännön sovelluksista voisi olla punaisella aallonpituudella fluoresoivan proteiinin tuottaminen. Myös monomerisaatiolla on tärkeä rooli CBD:n eri konstruktien spektroskooppisessa käyttäytymisessä ja näin ollen voisi olla järkevää painottaa CBD:n monomeerikonstruktien tutkimusta. Phytochromes are one of the three protein families regulating photomorphogenesis. They are found in plants, bacteria, cyanobacteria and fungi. Phytochromes react to changes in environment´s light conditions and for example they regulate seed germination and control of bacteria cell cycle. In nature phytochromes occur as homodimers. Phytochrome´s basic structure consists of cromophore-containing photoreseptor region and signaling region. The signaling region of the phytochrome reacts into alterations of light conditions and transmits information in the cell. The bacterial phytochrome of the Deinococcus radiodurans, which was used in this study, consists of the Per/Arndt/Sim (PAS) domain and the cGMP phosphoryesterase/adenylcyclase/FhlA (GAF) domain. Together PAS and GAF domains form the chromophore binding domain (CBD) and tetrapyrrole biliverdin is attached to CBD. Photoreceptor region is attached to a histidine kinase signaling region and contains also the phytochrome-related domain (PHY), which is linked to GAF. In nature phytochromes act like swithes having two excitation states: Pr and light-activated Pfr. Excitation occurs when tetrapyrrole in Pr form absorbs red wavelengths of light. This causes changes in tetrapyrroles conformation, which affects the folding of the phytochrome. Phytochrome can revert back to Pr by absorbing far-red wavelengths or spontaneously in dark reversion. The aim of this study was to examine whether monomerization and the addition of PHY domain affect the physical and spectroscopical properties of CBD. CBD and CBD-PHY were produced in both di- and monomer forms. High pressure liquid cromathography-size eclusion chromatography and UV-VIS spectroscopy were used to analyze phytochrome constructs. Results indicate that there are significant physical differences between dimer and monomer forms of CBD. High pressure liquid cromathography-size eclusion chromatography results indicate that the folding of the monomer form is more flexible compared to dimer form. Also, the spectroscopical properties of the monomer and dimer forms are different. In contrast to CBD dimer, the excitation of the CBD monomer is more complete and the dark reversion is prolonged. It was also discovered that the addition of PHY domain to CBD changes spectroscopical properties and stability of the protein. Light-activation of CBD-PHY was more complete compared to CBD in mono and dimer forms, and especially the dark reversion of the monomer form was almost completely inhibited. These results verify that addition of PHY domain is critical to stabilize CBD. Therefore, the addition of PHY domain enables preserving the excited state of the protein, which is consequential information in research of practical applications, for example in attempt to produce red-fluorescent protein. Also, due to spectroscopical effects caused by monomerization of CBD constructs, it is reasonable to emphasize the relevance to study CBD monomer constructs.
first_indexed 2024-09-11T08:49:37Z
format Pro gradu
free_online_boolean 1
fullrecord [{"key": "dc.contributor.author", "value": "Linna, Marko", "language": null, "element": "contributor", "qualifier": "author", "schema": "dc"}, {"key": "dc.date.accessioned", "value": "2014-05-08T11:59:50Z", "language": null, "element": "date", "qualifier": "accessioned", "schema": "dc"}, {"key": "dc.date.available", "value": "2014-05-08T11:59:50Z", "language": null, "element": "date", "qualifier": "available", "schema": "dc"}, {"key": "dc.date.issued", "value": "2014", "language": null, "element": "date", "qualifier": "issued", "schema": "dc"}, {"key": "dc.identifier.other", "value": "oai:jykdok.linneanet.fi:1434464", "language": null, "element": "identifier", "qualifier": "other", "schema": "dc"}, {"key": "dc.identifier.uri", "value": "https://jyx.jyu.fi/handle/123456789/43347", "language": null, "element": "identifier", "qualifier": "uri", "schema": "dc"}, {"key": "dc.description.abstract", "value": "Fytokromit ovat yksi kolmesta fotomorfogeneesi\u00e4 s\u00e4\u00e4televist\u00e4 proteiiniperheist\u00e4. Niit\u00e4 l\u00f6ytyy kasveista, bakteereista ja sienist\u00e4. Fytokromit reagoivat ymp\u00e4rist\u00f6n muuttuviin valaistusolosuhteisiin, ja niiden teht\u00e4viin kuuluvat muun muassa kasveilla siementen kehittymisen ja bakteereilla solusyklin s\u00e4\u00e4tely. Luonnossa fytokromi esiintyy homodimeerin\u00e4. Fytokromin perusrakenne koostuu kromoforin sis\u00e4lt\u00e4v\u00e4st\u00e4 fotoreseptorialueesta sek\u00e4 signalointialueesta, joka v\u00e4litt\u00e4\u00e4 tiedon valaistusolosuhteiden muuttumisesta solussa eteenp\u00e4in. T\u00e4ss\u00e4 tutkielmassa k\u00e4ytetyn Deinococcus radiodurans -bakteerin bakteerifytokromin fotoreseptorialueen runko rakentuu Per/Arndt/Sim (PAS) ja cGMP fosfodiesteraasi/adenyylisyklaasi/FhlA (GAF) -domeeneista, jotka muodostavat yhdess\u00e4 kromoforin sitoutumistaskun sis\u00e4lt\u00e4v\u00e4n domeenin (cromophore binding domain, CBD). CBD:iin on kiinnittynyt tetrapyrroli biliverdiini. Fotoreseptorialueeseen kuuluu lis\u00e4ksi fytokromiin liittyv\u00e4 domeeni (phytochrome-specific domain, PHY), joka on kiinnittynyt GAF-osaan. Fotoreseptorialue on puolestaan liittynyt histidiinikinaasina toimivaan signalointialueeseen. Fytokromi toimii luonnossa kytkimen\u00e4, jolla on lepotila Pr ja valottunut tila Pfr. Valottuminen tapahtuu, kun Pr-tilaisen fytokromin tetrapyrroli absorboi punaista valoa. T\u00e4m\u00e4n seurauksena tetrapyrrolin muoto muuttuu vaikuttaen samalla koko fytokromin laskostumiseen. Pfr-tilasta fytokromi palautuu takaisin Pr-tilaan joko absorboimalla pitempi\u00e4 aallonpituuksia tai spontaanisti pime\u00e4palautumiseksi kutsutussa reaktiossa. Tutkimuksessa pyrittiin selvitt\u00e4m\u00e4\u00e4n vaikuttavatko monomerisaatio ja PHY-domeenin lis\u00e4\u00e4minen CBD:n fysikaalisiin ja spektroskopisiin ominaisuuksiin. Tutkimusta varten tuotettiin sek\u00e4 CBD:n ett\u00e4 CBD-PHY:n dimeeri- ja monomeerimuotoa. Fytokromikonstruktit analysoitiin korkean erottelun nestekromatografia-kokoa erotteleva kromatografia -mittauksilla sek\u00e4 UV-VIS -spektroskopialla. Saaduista tuloksista on havaittavissa, ett\u00e4 CBD:n dimeeri- ja monomeerimuotojen v\u00e4lill\u00e4 on merkitt\u00e4vi\u00e4 fysikaalisia eroja. Korkean erottelun nestekromatografia-kokoa erotteleva kromatografia -mittausten tuloksista voidaan todeta, ett\u00e4 monomeerimuodon laskostuminen Pfr -tilassa on mahdollisesti joustavampi kuin dimeerimuodon. My\u00f6s monomeerimuodon spektroskooppiset ominaisuudet poikkeavat dimeerimuodon ominaisuuksista. Monomeerimuoto valottuu dimeerimuotoa t\u00e4ydellisemmin Pfr-tilaan, ja pime\u00e4palautuminen on huomattavasti hitaampaa. PHY -domeenin lis\u00e4ys CBD:iin muuttaa fytokromin spektroskopisia ominaisuuksia ett\u00e4 stabiiliutta. CBD-PHY:n dimeeri- ja monomeerimuodot valottuivat CBD:t\u00e4 paremmin Pfr-tilaan, ja etenkin monomeerimuodon pime\u00e4palautuminen on l\u00e4hes t\u00e4ysin estynyt. Saadut tulokset osoittavat PHY -domeenin olevan kriittinen tekij\u00e4 CBD:n stabiloinnissa. PHY-domeenin liitt\u00e4minen CBD:n mahdollistaa viritystilan s\u00e4ilytt\u00e4misen, joka on t\u00e4rke\u00e4\u00e4 tutkittaessa mahdollisia k\u00e4yt\u00e4nn\u00f6n sovelluksia. Esimerkki mahdollisista k\u00e4yt\u00e4nn\u00f6n sovelluksista voisi olla punaisella aallonpituudella fluoresoivan proteiinin tuottaminen. My\u00f6s monomerisaatiolla on t\u00e4rke\u00e4 rooli CBD:n eri konstruktien spektroskooppisessa k\u00e4ytt\u00e4ytymisess\u00e4 ja n\u00e4in ollen voisi olla j\u00e4rkev\u00e4\u00e4 painottaa CBD:n monomeerikonstruktien tutkimusta.", "language": "fi", "element": "description", "qualifier": "abstract", "schema": "dc"}, {"key": "dc.description.abstract", "value": "Phytochromes are one of the three protein families regulating photomorphogenesis. They are found in plants, bacteria, cyanobacteria and fungi. Phytochromes react to changes in environment\u00b4s light conditions and for example they regulate seed germination and control of bacteria cell cycle. In nature phytochromes occur as homodimers. Phytochrome\u00b4s basic structure consists of cromophore-containing photoreseptor region and signaling region. The signaling region of the phytochrome reacts into alterations of light conditions and transmits information in the cell. The bacterial phytochrome of the Deinococcus radiodurans, which was used in this study, consists of the Per/Arndt/Sim (PAS) domain and the cGMP phosphoryesterase/adenylcyclase/FhlA (GAF) domain. Together PAS and GAF domains form the chromophore binding domain (CBD) and tetrapyrrole biliverdin is attached to CBD. Photoreceptor region is attached to a histidine kinase signaling region and contains also the phytochrome-related domain (PHY), which is linked to GAF. In nature phytochromes act like swithes having two excitation states: Pr and light-activated Pfr. Excitation occurs when tetrapyrrole in Pr form absorbs red wavelengths of light. This causes changes in tetrapyrroles conformation, which affects the folding of the phytochrome. Phytochrome can revert back to Pr by absorbing far-red wavelengths or spontaneously in dark reversion. The aim of this study was to examine whether monomerization and the addition of PHY domain affect the physical and spectroscopical properties of CBD. CBD and CBD-PHY were produced in both di- and monomer forms. High pressure liquid cromathography-size eclusion chromatography and UV-VIS spectroscopy were used to analyze phytochrome constructs. Results indicate that there are significant physical differences between dimer and monomer forms of CBD. High pressure liquid cromathography-size eclusion chromatography results indicate that the folding of the monomer form is more flexible compared to dimer form. Also, the spectroscopical properties of the monomer and dimer forms are different. In contrast to CBD dimer, the excitation of the CBD monomer is more complete and the dark reversion is prolonged. It was also discovered that the addition of PHY domain to CBD changes spectroscopical properties and stability of the protein. Light-activation of CBD-PHY was more complete compared to CBD in mono and dimer forms, and especially the dark reversion of the monomer form was almost completely inhibited. These results verify that addition of PHY domain is critical to stabilize CBD. Therefore, the addition of PHY domain enables preserving the excited state of the protein, which is consequential information in research of practical applications, for example in attempt to produce red-fluorescent protein. Also, due to spectroscopical effects caused by monomerization of CBD constructs, it is reasonable to emphasize the relevance to study CBD monomer constructs.", "language": "en", "element": "description", "qualifier": "abstract", "schema": "dc"}, {"key": "dc.description.provenance", "value": "Submitted using Plone Publishing form by Marko Linna (majulinn) on 2014-05-08 11:59:50.085509. Form: Pro gradu -lomake (1 tekij\u00e4) (https://kirjasto.jyu.fi/julkaisut/julkaisulomakkeet/pro-gradu-lomake-1-tekijae). JyX data:", "language": "en", "element": "description", "qualifier": "provenance", "schema": "dc"}, {"key": "dc.description.provenance", "value": "Submitted by jyx lomake-julkaisija (jyx-julkaisija@noreply.fi) on 2014-05-08T11:59:50Z\nNo. of bitstreams: 2\nURN:NBN:fi:jyu-201405081648.pdf: 2940208 bytes, checksum: 5d8edb4fd8235ba9cf9d9012d0c161d1 (MD5)\nlicense.html: 4893 bytes, checksum: 8860048647985acdcaa7b6baf300a199 (MD5)", "language": "en", "element": "description", "qualifier": "provenance", "schema": "dc"}, {"key": "dc.description.provenance", "value": "Made available in DSpace on 2014-05-08T11:59:50Z (GMT). No. of bitstreams: 2\nURN:NBN:fi:jyu-201405081648.pdf: 2940208 bytes, checksum: 5d8edb4fd8235ba9cf9d9012d0c161d1 (MD5)\nlicense.html: 4893 bytes, checksum: 8860048647985acdcaa7b6baf300a199 (MD5)\n Previous issue date: 2014", "language": "en", "element": "description", "qualifier": "provenance", "schema": "dc"}, {"key": "dc.format.extent", "value": "1 verkkoaineisto (33 sivua)", "language": null, "element": "format", "qualifier": "extent", "schema": "dc"}, {"key": "dc.format.mimetype", "value": "application/pdf", "language": null, "element": "format", "qualifier": "mimetype", "schema": "dc"}, {"key": "dc.language.iso", "value": "fin", "language": null, "element": "language", "qualifier": "iso", "schema": "dc"}, {"key": "dc.rights", "value": "In Copyright", "language": "en", "element": "rights", "qualifier": null, "schema": "dc"}, {"key": "dc.subject.other", "value": "fytokromi", "language": null, "element": "subject", "qualifier": "other", "schema": "dc"}, {"key": "dc.subject.other", "value": "monomerisaatio", "language": null, "element": "subject", "qualifier": "other", "schema": "dc"}, {"key": "dc.title", "value": "Monomerisaation vaikutus Deinococcus radioduransin fytokromiin", "language": null, "element": "title", "qualifier": null, "schema": "dc"}, {"key": "dc.type", "value": "master thesis", "language": null, "element": "type", "qualifier": null, "schema": "dc"}, {"key": "dc.identifier.urn", "value": "URN:NBN:fi:jyu-201405081648", "language": null, "element": "identifier", "qualifier": "urn", "schema": "dc"}, {"key": "dc.type.ontasot", "value": "Pro gradu -tutkielma", "language": "fi", "element": "type", "qualifier": "ontasot", "schema": "dc"}, {"key": "dc.type.ontasot", "value": "Master\u2019s thesis", "language": "en", "element": "type", "qualifier": "ontasot", "schema": "dc"}, {"key": "dc.contributor.faculty", "value": "Matemaattis-luonnontieteellinen tiedekunta", "language": "fi", "element": "contributor", "qualifier": "faculty", "schema": "dc"}, {"key": "dc.contributor.faculty", "value": "Faculty of Sciences", "language": "en", "element": "contributor", "qualifier": "faculty", "schema": "dc"}, {"key": "dc.contributor.department", "value": "Bio- ja ymp\u00e4rist\u00f6tieteiden laitos", "language": "fi", "element": "contributor", "qualifier": "department", "schema": "dc"}, {"key": "dc.contributor.department", "value": "Department of Biological and Environmental Science", "language": "en", "element": "contributor", "qualifier": "department", "schema": "dc"}, {"key": "dc.contributor.organization", "value": "University of Jyv\u00e4skyl\u00e4", "language": "en", "element": "contributor", "qualifier": "organization", "schema": "dc"}, {"key": "dc.contributor.organization", "value": "Jyv\u00e4skyl\u00e4n yliopisto", "language": "fi", "element": "contributor", "qualifier": "organization", "schema": "dc"}, {"key": "dc.subject.discipline", "value": "Solu- ja molekyylibiologia", "language": "fi", "element": "subject", "qualifier": "discipline", "schema": "dc"}, {"key": "dc.subject.discipline", "value": "Cell and molecular biology", "language": "en", "element": "subject", "qualifier": "discipline", "schema": "dc"}, {"key": "dc.date.updated", "value": "2014-05-08T11:59:51Z", "language": null, "element": "date", "qualifier": "updated", "schema": "dc"}, {"key": "dc.type.coar", "value": "http://purl.org/coar/resource_type/c_bdcc", "language": null, "element": "type", "qualifier": "coar", "schema": "dc"}, {"key": "dc.rights.accesslevel", "value": "openAccess", "language": "fi", "element": "rights", "qualifier": "accesslevel", "schema": "dc"}, {"key": "dc.type.publication", "value": "masterThesis", "language": null, "element": "type", "qualifier": "publication", "schema": "dc"}, {"key": "dc.subject.oppiainekoodi", "value": "4013", "language": null, "element": "subject", "qualifier": "oppiainekoodi", "schema": "dc"}, {"key": "dc.subject.yso", "value": "proteiinit", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.format.content", "value": "fulltext", "language": null, "element": "format", "qualifier": "content", "schema": "dc"}, {"key": "dc.rights.url", "value": "https://rightsstatements.org/page/InC/1.0/", "language": null, "element": "rights", "qualifier": "url", "schema": "dc"}, {"key": "dc.type.okm", "value": "G2", "language": null, "element": "type", "qualifier": "okm", "schema": "dc"}]
id jyx.123456789_43347
language fin
last_indexed 2025-03-31T20:02:56Z
main_date 2014-01-01T00:00:00Z
main_date_str 2014
online_boolean 1
online_urls_str_mv {"url":"https:\/\/jyx.jyu.fi\/bitstreams\/16a4a031-0970-4325-a73a-3119d63b4028\/download","text":"URN:NBN:fi:jyu-201405081648.pdf","source":"jyx","mediaType":"application\/pdf"}
publishDate 2014
record_format qdc
source_str_mv jyx
spellingShingle Linna, Marko Monomerisaation vaikutus Deinococcus radioduransin fytokromiin fytokromi monomerisaatio Solu- ja molekyylibiologia Cell and molecular biology 4013 proteiinit
title Monomerisaation vaikutus Deinococcus radioduransin fytokromiin
title_full Monomerisaation vaikutus Deinococcus radioduransin fytokromiin
title_fullStr Monomerisaation vaikutus Deinococcus radioduransin fytokromiin Monomerisaation vaikutus Deinococcus radioduransin fytokromiin
title_full_unstemmed Monomerisaation vaikutus Deinococcus radioduransin fytokromiin Monomerisaation vaikutus Deinococcus radioduransin fytokromiin
title_short Monomerisaation vaikutus Deinococcus radioduransin fytokromiin
title_sort monomerisaation vaikutus deinococcus radioduransin fytokromiin
title_txtP Monomerisaation vaikutus Deinococcus radioduransin fytokromiin
topic fytokromi monomerisaatio Solu- ja molekyylibiologia Cell and molecular biology 4013 proteiinit
topic_facet 4013 Cell and molecular biology Solu- ja molekyylibiologia fytokromi monomerisaatio proteiinit
url https://jyx.jyu.fi/handle/123456789/43347 http://www.urn.fi/URN:NBN:fi:jyu-201405081648
work_keys_str_mv AT linnamarko monomerisaationvaikutusdeinococcusradioduransinfytokromiin