Twitterin tuottaman datan tekstianalytiikka ja sovellettavuus julkishallinnossa

Tässä pro gradu-tutkielmassa tarkastellaan sosiaalisen median mikroblogipalvelu Twitterin tuottaman datan tekstianalytiikkaa sekä arvioidaan tämän sovellettavuutta julkishallinnon palvelukseen. Tutkimuksen tarkoituksena on selvittää, mitä Twitter-datan tekstianalytiikalla voidaan tutkia, millaisia m...

Full description

Bibliographic Details
Main Author: Nivala, Tuomas
Other Authors: Faculty of Information Technology, Informaatioteknologian tiedekunta, Tietojenkäsittelytieteiden laitos, Department of Computer Science and Information Systems, University of Jyväskylä, Jyväskylän yliopisto
Format: Master's thesis
Language:fin
Published: 2013
Subjects:
Online Access: https://jyx.jyu.fi/handle/123456789/42461
_version_ 1828193126788890624
author Nivala, Tuomas
author2 Faculty of Information Technology Informaatioteknologian tiedekunta Tietojenkäsittelytieteiden laitos Department of Computer Science and Information Systems University of Jyväskylä Jyväskylän yliopisto
author_facet Nivala, Tuomas Faculty of Information Technology Informaatioteknologian tiedekunta Tietojenkäsittelytieteiden laitos Department of Computer Science and Information Systems University of Jyväskylä Jyväskylän yliopisto Nivala, Tuomas Faculty of Information Technology Informaatioteknologian tiedekunta Tietojenkäsittelytieteiden laitos Department of Computer Science and Information Systems University of Jyväskylä Jyväskylän yliopisto
author_sort Nivala, Tuomas
datasource_str_mv jyx
description Tässä pro gradu-tutkielmassa tarkastellaan sosiaalisen median mikroblogipalvelu Twitterin tuottaman datan tekstianalytiikkaa sekä arvioidaan tämän sovellettavuutta julkishallinnon palvelukseen. Tutkimuksen tarkoituksena on selvittää, mitä Twitter-datan tekstianalytiikalla voidaan tutkia, millaisia menetelmiä näissä tutkimuksissa on käytetty ja millaisia tuloksia on saatu. Julkishallinnon osalta mielenkiinnon kohteena on se, kuinka näitä menetelmiä voidaan käyttää julkishallinnon organisaatioiden tekstianalytiikassa. Twitter-datan tekstianalytiikan menetelmien osalta tutkielmassa on tehty kirjallisuuskatsaus olemassa olevaan tutkimukseen. Empiirisessä osuudessa on suoritettu puolistrukturoidut teemahaastattelut aihepiiristä julkishallinnon kohdeorganisaatioiden edustajien kanssa. Nämä organisaatiot olivat Kansaneläkelaitos (KELA) ja Terveyden ja hyvinnoinnin laitos (THL). Tutkielman tuloksina havaitaan Twitter-datan tekstianalytiikkaa voitavan käyttää hyvin laaja-alaisesti erilaisissa tutkimuksissa. Tekstianalytiikan menetelmien todettiin soveltuvan erittäin hyvin Twitterin tekstidatan hyödyntämiseen lukuun ottamatta poliittista tutkimusta. Julkishallinnon todetaan hyötyvän potentiaalisesti lukuisin tavoin sosiaalisen median luoman datan seurannasta tekstianalytiikan keinoin. Sen sijaan Twitter-datan tekstianalytiikan menetelmien soveltuvuutta julkishallinnon oman tekstimuotoisen datan käsittelyyn ei voida tämän tutkielman perusteella arvioida. In this Master’s Thesis, examination has been done on the use of text analytics on Twitter-generated data and on the applicability of these methods for public governance. The purpose of the study is to define what types of research can be done based on Twitter data text analytics, what are the methods that has been used and what kind of results have been achieved. Further regarding public governance, interest is focused on how these methods could be applied. Regarding Twitter data text analytics methods, literature research was done on existing research literature. In the empirical part of the study semi-structured theme interviews were done with the representatives from two different organizations of the public governance. These organizations were the Social Insurance Institution of Finland (KELA) and National Institute for Health and Welfare (THL). As the result of the study, wide applicability of the text analytics methods on Twitter data was discovered. Twitter data text analytics methods can be efficiently used for variety of research topics although political research remains a challenging topic. Results indicate also that public governance can potentially benefit in various ways from the surveillance of social media data. However, the applicability of Twitter data-based text analytics methods for public governance’s own textual data cannot be evaluated on the basis of this study.
first_indexed 2023-03-22T09:58:08Z
format Pro gradu
free_online_boolean 1
fullrecord [{"key": "dc.contributor.author", "value": "Nivala, Tuomas", "language": null, "element": "contributor", "qualifier": "author", "schema": "dc"}, {"key": "dc.date.accessioned", "value": "2013-11-14T16:16:12Z", "language": null, "element": "date", "qualifier": "accessioned", "schema": "dc"}, {"key": "dc.date.available", "value": "2013-11-14T16:16:12Z", "language": null, "element": "date", "qualifier": "available", "schema": "dc"}, {"key": "dc.date.issued", "value": "2013", "language": null, "element": "date", "qualifier": "issued", "schema": "dc"}, {"key": "dc.identifier.other", "value": "oai:jykdok.linneanet.fi:1287200", "language": null, "element": "identifier", "qualifier": "other", "schema": "dc"}, {"key": "dc.identifier.uri", "value": "https://jyx.jyu.fi/handle/123456789/42461", "language": null, "element": "identifier", "qualifier": "uri", "schema": "dc"}, {"key": "dc.description.abstract", "value": "T\u00e4ss\u00e4 pro gradu-tutkielmassa tarkastellaan sosiaalisen median mikroblogipalvelu Twitterin tuottaman datan tekstianalytiikkaa sek\u00e4 arvioidaan t\u00e4m\u00e4n sovellettavuutta julkishallinnon palvelukseen. Tutkimuksen tarkoituksena on selvitt\u00e4\u00e4, mit\u00e4 Twitter-datan tekstianalytiikalla voidaan tutkia, millaisia menetelmi\u00e4 n\u00e4iss\u00e4 tutkimuksissa on k\u00e4ytetty ja millaisia tuloksia on saatu. Julkishallinnon osalta mielenkiinnon kohteena on se, kuinka n\u00e4it\u00e4 menetelmi\u00e4 voidaan k\u00e4ytt\u00e4\u00e4 julkishallinnon organisaatioiden tekstianalytiikassa. Twitter-datan tekstianalytiikan menetelmien osalta tutkielmassa on tehty kirjallisuuskatsaus olemassa olevaan tutkimukseen. Empiirisess\u00e4 osuudessa on suoritettu puolistrukturoidut teemahaastattelut aihepiirist\u00e4 julkishallinnon kohdeorganisaatioiden edustajien kanssa. N\u00e4m\u00e4 organisaatiot olivat Kansanel\u00e4kelaitos (KELA) ja Terveyden ja hyvinnoinnin laitos (THL).\nTutkielman tuloksina havaitaan Twitter-datan tekstianalytiikkaa voitavan k\u00e4ytt\u00e4\u00e4 hyvin laaja-alaisesti erilaisissa tutkimuksissa. Tekstianalytiikan menetelmien todettiin soveltuvan eritt\u00e4in hyvin Twitterin tekstidatan hy\u00f6dynt\u00e4miseen lukuun ottamatta poliittista tutkimusta. Julkishallinnon todetaan hy\u00f6tyv\u00e4n potentiaalisesti lukuisin tavoin sosiaalisen median luoman datan seurannasta tekstianalytiikan keinoin. Sen sijaan Twitter-datan tekstianalytiikan menetelmien soveltuvuutta julkishallinnon oman tekstimuotoisen datan k\u00e4sittelyyn ei voida t\u00e4m\u00e4n tutkielman perusteella arvioida.", "language": "fi", "element": "description", "qualifier": "abstract", "schema": "dc"}, {"key": "dc.description.abstract", "value": "In this Master\u2019s Thesis, examination has been done on the use of text analytics on Twitter-generated data and on the applicability of these methods for public governance. The purpose of the study is to define what types of research can be done based on Twitter data text analytics, what are the methods that has been used and what kind of results have been achieved. Further regarding public governance, interest is focused on how these methods could be applied.\n\tRegarding Twitter data text analytics methods, literature research was done on existing research literature. In the empirical part of the study semi-structured theme interviews were done with the representatives from two different organizations of the public governance. These organizations were the Social Insurance Institution of Finland (KELA) and National Institute for Health and Welfare (THL).\n\tAs the result of the study, wide applicability of the text analytics methods on Twitter data was discovered. Twitter data text analytics methods can be efficiently used for variety of research topics although political research remains a challenging topic. Results indicate also that public governance can potentially benefit in various ways from the surveillance of social media data. However, the applicability of Twitter data-based text analytics methods for public governance\u2019s own textual data cannot be evaluated on the basis of this study.", "language": "en", "element": "description", "qualifier": "abstract", "schema": "dc"}, {"key": "dc.description.provenance", "value": "Submitted using Plone Publishing form by Tuomas Nivala (tuvijoni) on 2013-11-14 16:16:12.237167. Form: Pro gradu -lomake (1 tekij\u00e4) (https://kirjasto.jyu.fi/julkaisut/julkaisulomakkeet/pro-gradu-lomake-1-tekijae). JyX data:", "language": "en", "element": "description", "qualifier": "provenance", "schema": "dc"}, {"key": "dc.description.provenance", "value": "Submitted by jyx lomake-julkaisija (jyx-julkaisija@noreply.fi) on 2013-11-14T16:16:12Z\nNo. of bitstreams: 2\nURN:NBN:fi:jyu-201311142593.pdf: 746446 bytes, checksum: 3ebd8bea0ee385e92dc206d8bb60afbb (MD5)\nlicense.html: 4916 bytes, checksum: 484793cdbb233ca4eb41287728151117 (MD5)", "language": "en", "element": "description", "qualifier": "provenance", "schema": "dc"}, {"key": "dc.description.provenance", "value": "Made available in DSpace on 2013-11-14T16:16:12Z (GMT). No. of bitstreams: 2\nURN:NBN:fi:jyu-201311142593.pdf: 746446 bytes, checksum: 3ebd8bea0ee385e92dc206d8bb60afbb (MD5)\nlicense.html: 4916 bytes, checksum: 484793cdbb233ca4eb41287728151117 (MD5)\n Previous issue date: 2013", "language": "en", "element": "description", "qualifier": "provenance", "schema": "dc"}, {"key": "dc.format.extent", "value": "1 verkkoaineisto.", "language": null, "element": "format", "qualifier": "extent", "schema": "dc"}, {"key": "dc.format.mimetype", "value": "application/pdf", "language": null, "element": "format", "qualifier": "mimetype", "schema": "dc"}, {"key": "dc.language.iso", "value": "fin", "language": null, "element": "language", "qualifier": "iso", "schema": "dc"}, {"key": "dc.rights", "value": "In Copyright", "language": "en", "element": "rights", "qualifier": null, "schema": "dc"}, {"key": "dc.subject.other", "value": "Kansanel\u00e4kelaitos", "language": null, "element": "subject", "qualifier": "other", "schema": "dc"}, {"key": "dc.subject.other", "value": "Terveyden ja hyvinvoinnin laitos", "language": null, "element": "subject", "qualifier": "other", "schema": "dc"}, {"key": "dc.subject.other", "value": "tekstianalytiikka", "language": null, "element": "subject", "qualifier": "other", "schema": "dc"}, {"key": "dc.title", "value": "Twitterin tuottaman datan tekstianalytiikka ja sovellettavuus julkishallinnossa", "language": null, "element": "title", "qualifier": null, "schema": "dc"}, {"key": "dc.type", "value": "master thesis", "language": null, "element": "type", "qualifier": null, "schema": "dc"}, {"key": "dc.identifier.urn", "value": "URN:NBN:fi:jyu-201311142593", "language": null, "element": "identifier", "qualifier": "urn", "schema": "dc"}, {"key": "dc.type.ontasot", "value": "Master\u2019s thesis", "language": "en", "element": "type", "qualifier": "ontasot", "schema": "dc"}, {"key": "dc.type.ontasot", "value": "Pro gradu -tutkielma", "language": "fi", "element": "type", "qualifier": "ontasot", "schema": "dc"}, {"key": "dc.contributor.faculty", "value": "Faculty of Information Technology", "language": "en", "element": "contributor", "qualifier": "faculty", "schema": "dc"}, {"key": "dc.contributor.faculty", "value": "Informaatioteknologian tiedekunta", "language": "fi", "element": "contributor", "qualifier": "faculty", "schema": "dc"}, {"key": "dc.contributor.department", "value": "Tietojenk\u00e4sittelytieteiden laitos", "language": "fi", "element": "contributor", "qualifier": "department", "schema": "dc"}, {"key": "dc.contributor.department", "value": "Department of Computer Science and Information Systems", "language": "en", "element": "contributor", "qualifier": "department", "schema": "dc"}, {"key": "dc.contributor.organization", "value": "University of Jyv\u00e4skyl\u00e4", "language": "en", "element": "contributor", "qualifier": "organization", "schema": "dc"}, {"key": "dc.contributor.organization", "value": "Jyv\u00e4skyl\u00e4n yliopisto", "language": "fi", "element": "contributor", "qualifier": "organization", "schema": "dc"}, {"key": "dc.subject.discipline", "value": "Information Systems Science", "language": "en", "element": "subject", "qualifier": "discipline", "schema": "dc"}, {"key": "dc.subject.discipline", "value": "Tietoj\u00e4rjestelm\u00e4tiede", "language": "fi", "element": "subject", "qualifier": "discipline", "schema": "dc"}, {"key": "dc.date.updated", "value": "2013-11-14T16:16:13Z", "language": null, "element": "date", "qualifier": "updated", "schema": "dc"}, {"key": "dc.type.coar", "value": "http://purl.org/coar/resource_type/c_bdcc", "language": null, "element": "type", "qualifier": "coar", "schema": "dc"}, {"key": "dc.rights.accesslevel", "value": "openAccess", "language": "fi", "element": "rights", "qualifier": "accesslevel", "schema": "dc"}, {"key": "dc.type.publication", "value": "masterThesis", "language": null, "element": "type", "qualifier": "publication", "schema": "dc"}, {"key": "dc.subject.oppiainekoodi", "value": "601", "language": null, "element": "subject", "qualifier": "oppiainekoodi", "schema": "dc"}, {"key": "dc.subject.yso", "value": "Twitter", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "sosiaalinen media", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "julkinen hallinto", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.format.content", "value": "fulltext", "language": null, "element": "format", "qualifier": "content", "schema": "dc"}, {"key": "dc.rights.url", "value": "https://rightsstatements.org/page/InC/1.0/", "language": null, "element": "rights", "qualifier": "url", "schema": "dc"}, {"key": "dc.type.okm", "value": "G2", "language": null, "element": "type", "qualifier": "okm", "schema": "dc"}]
id jyx.123456789_42461
language fin
last_indexed 2025-03-31T20:01:30Z
main_date 2013-01-01T00:00:00Z
main_date_str 2013
online_boolean 1
online_urls_str_mv {"url":"https:\/\/jyx.jyu.fi\/bitstreams\/ed3b5508-e095-4759-8117-8a6dd480d8a1\/download","text":"URN:NBN:fi:jyu-201311142593.pdf","source":"jyx","mediaType":"application\/pdf"}
publishDate 2013
record_format qdc
source_str_mv jyx
spellingShingle Nivala, Tuomas Twitterin tuottaman datan tekstianalytiikka ja sovellettavuus julkishallinnossa Kansaneläkelaitos Terveyden ja hyvinvoinnin laitos tekstianalytiikka Information Systems Science Tietojärjestelmätiede 601 Twitter sosiaalinen media julkinen hallinto
title Twitterin tuottaman datan tekstianalytiikka ja sovellettavuus julkishallinnossa
title_full Twitterin tuottaman datan tekstianalytiikka ja sovellettavuus julkishallinnossa
title_fullStr Twitterin tuottaman datan tekstianalytiikka ja sovellettavuus julkishallinnossa Twitterin tuottaman datan tekstianalytiikka ja sovellettavuus julkishallinnossa
title_full_unstemmed Twitterin tuottaman datan tekstianalytiikka ja sovellettavuus julkishallinnossa Twitterin tuottaman datan tekstianalytiikka ja sovellettavuus julkishallinnossa
title_short Twitterin tuottaman datan tekstianalytiikka ja sovellettavuus julkishallinnossa
title_sort twitterin tuottaman datan tekstianalytiikka ja sovellettavuus julkishallinnossa
title_txtP Twitterin tuottaman datan tekstianalytiikka ja sovellettavuus julkishallinnossa
topic Kansaneläkelaitos Terveyden ja hyvinvoinnin laitos tekstianalytiikka Information Systems Science Tietojärjestelmätiede 601 Twitter sosiaalinen media julkinen hallinto
topic_facet 601 Information Systems Science Kansaneläkelaitos Terveyden ja hyvinvoinnin laitos Tietojärjestelmätiede Twitter julkinen hallinto sosiaalinen media tekstianalytiikka
url https://jyx.jyu.fi/handle/123456789/42461 http://www.urn.fi/URN:NBN:fi:jyu-201311142593
work_keys_str_mv AT nivalatuomas twitterintuottamandatantekstianalytiikkajasovellettavuusjulkishallinnossa