Implementing the 3-omega technique for thermal conductivity measurements

Thermal conductivity of the constituent materials is one of the most important properties affecting the performance of micro- and nanofabricated devices. These devices often make use of thin films with thicknesses ranging from some nanometers to few micrometers. The thermal conductivity of thin film...

Täydet tiedot

Bibliografiset tiedot
Päätekijä: Hänninen, Tuomas
Muut tekijät: Matemaattis-luonnontieteellinen tiedekunta, Faculty of Sciences, Fysiikan laitos, Department of Physics, University of Jyväskylä, Jyväskylän yliopisto
Aineistotyyppi: Pro gradu
Kieli:eng
Julkaistu: 2013
Aiheet:
Linkit: https://jyx.jyu.fi/handle/123456789/42120
_version_ 1828193125512773632
author Hänninen, Tuomas
author2 Matemaattis-luonnontieteellinen tiedekunta Faculty of Sciences Fysiikan laitos Department of Physics University of Jyväskylä Jyväskylän yliopisto
author_facet Hänninen, Tuomas Matemaattis-luonnontieteellinen tiedekunta Faculty of Sciences Fysiikan laitos Department of Physics University of Jyväskylä Jyväskylän yliopisto Hänninen, Tuomas Matemaattis-luonnontieteellinen tiedekunta Faculty of Sciences Fysiikan laitos Department of Physics University of Jyväskylä Jyväskylän yliopisto
author_sort Hänninen, Tuomas
datasource_str_mv jyx
description Thermal conductivity of the constituent materials is one of the most important properties affecting the performance of micro- and nanofabricated devices. These devices often make use of thin films with thicknesses ranging from some nanometers to few micrometers. The thermal conductivity of thin films can be measured with the three-omega method. In three-omega technique a metal wire acting as a resistive heater is microfabricated on the sample. Alternating current passing through the metal heater at a frequency ω heats the sample periodically and generates oscillations in the resistance of the metal line at a frequency 2ω. The oscillating resistance component is coupled with the driving current to create a third harmonic (3ω) voltage component over the heater. The magnitude and frequency dependence of the 3ω voltage can be used to obtain the thermal properties of the sample. The measurement setup consisted of a vacuum chamber with a custom sample mount, lock-in amplifiers to supply the voltage and to record the output, and various other electrical components. Custom LabVIEW programs were used for data acquisition and input signal modification. The goal of the project was to build and validate a 3ω-measurement setup by measuring the thermal conductivities of 300 nm thick SiO2 thin films. Bismuth and gold were used as the heater materials because they have noticeable temperature coeffcients of resistivity, bismuth even at temperatures of a few kelvin. Data analysis revealed that the output of the examined measurement setups can not be used to calculate the thermal properties of the samples. This is most probably due to spurious 3ω-signal in the measurement circuit, originating from the components and voltage sources. Valmistusaineiden lämmönjohtavuus on yksi tärkeimmistä mikro- ja nanovalmistettujen laitteiden toimintaan vaikuttavista ominaisuuksista. Usein näissä laitteissa materiaaleja käytetään ohuina kerroksina tai kalvoina, joiden paksuus voi vaihdella muutamista nano- metreistä muutamiin mikrometreihin. Ohutkalvojen lämmönjohtavuutta voidaan mitata kolme-omega-menetelmällä. Kolme-omega-menetelmässä näytteen pinnalle valmistettu metallijohdin toimii resistiivisenä lämmittimenä. Metallilämmittimen läpi taajuudella ω kulkeva vaihtovirta lämmittää metallia jaksollisesti ja aiheuttaa oskillaatioita metallilangan resistanssissa taajuudella 2ω. Oskilloiva resistanssikomponentti yhdessä langan läpi kulkevan virran kanssa aiheuttaa 3ω-taajuisen jännitekomponentin langan päiden välille. Tämän 3ω-jännitteen suuruutta ja taajuusriippuvuutta voidaan käyttää näytteen termisten ominaisuuksien määrittämiseen. Mittausjärjestely koostui tyhjiökammiosta ja räätälöidystä näytea- lustasta, tarvittavista sähköisistä komponenteista ja lukitusvahvisti- mista, joilla syötettiin piiriin vaihtojännite ja mitattiin saatu ulostulos- ignaali. Datankeruu ja syöttösignaalin ohjaus suoritettiin erityisillä LabVIEW-ohjelmilla. Projektin tarkoituksena oli rakentaa ja validoida kolme-omega- mittausjärjestely mittaamalla 300 nanometriä paksujen piidioksidi- kalvojen lämmönjohtavuuksia. Vismuttia ja kultaa kokeiltiin lämmitinlangan materiaalina, koska niillä on huomattava resistiivisyyden lämpötilavaste, vismutilla aina muutaman kelvinin lämpötiloihin as- ti. Data-analyysi paljasti, että saatua mittausdataa ei voida käyttää näytteiden lämpöominaisuuksien määrittämiseen. Syy tälle on todennäköisesti mittauspiiristä ja signaalilähteistä aiheutuva häiriösignaali.
first_indexed 2023-03-22T09:58:51Z
format Pro gradu
free_online_boolean 1
fullrecord [{"key": "dc.contributor.author", "value": "H\u00e4nninen, Tuomas", "language": null, "element": "contributor", "qualifier": "author", "schema": "dc"}, {"key": "dc.date.accessioned", "value": "2013-09-10T06:43:10Z", "language": "", "element": "date", "qualifier": "accessioned", "schema": "dc"}, {"key": "dc.date.available", "value": "2013-09-10T06:43:10Z", "language": "", "element": "date", "qualifier": "available", "schema": "dc"}, {"key": "dc.date.issued", "value": "2013", "language": null, "element": "date", "qualifier": "issued", "schema": "dc"}, {"key": "dc.identifier.other", "value": "oai:jykdok.linneanet.fi:1279554", "language": null, "element": "identifier", "qualifier": "other", "schema": "dc"}, {"key": "dc.identifier.uri", "value": "https://jyx.jyu.fi/handle/123456789/42120", "language": "", "element": "identifier", "qualifier": "uri", "schema": "dc"}, {"key": "dc.description.abstract", "value": "Thermal conductivity of the constituent materials is one of the most important properties affecting the performance of micro- and nanofabricated devices. These devices often make use of thin films with thicknesses ranging from some nanometers to few micrometers. The thermal conductivity of thin films can be measured with the three-omega method. In three-omega technique a metal wire acting as a resistive heater is microfabricated on the sample. Alternating current passing through the metal heater at a frequency \u03c9 heats the sample periodically and generates oscillations in the resistance of the metal line at a frequency 2\u03c9. The oscillating resistance component is coupled with the driving current to create a third harmonic (3\u03c9) voltage component over the heater. The magnitude and frequency dependence of the 3\u03c9 voltage can be used to obtain the thermal properties of the sample.\r\nThe measurement setup consisted of a vacuum chamber with a custom sample mount, lock-in amplifiers to supply the voltage and to record the output, and various other electrical components. Custom LabVIEW programs were used for data acquisition and input signal modification.\r\nThe goal of the project was to build and validate a 3\u03c9-measurement setup by measuring the thermal conductivities of 300 nm thick SiO2 thin films. Bismuth and gold were used as the heater materials because they have noticeable temperature coeffcients of resistivity, bismuth even at temperatures of a few kelvin. Data analysis revealed that the output of the examined measurement setups can not be used to calculate the thermal properties of the samples. This is most probably due to spurious 3\u03c9-signal in the measurement circuit, originating from the components and voltage sources.", "language": "en", "element": "description", "qualifier": "abstract", "schema": "dc"}, {"key": "dc.description.abstract", "value": "Valmistusaineiden l\u00e4mm\u00f6njohtavuus on yksi t\u00e4rkeimmist\u00e4 mikro- ja nanovalmistettujen laitteiden toimintaan vaikuttavista ominaisuuksista. Usein n\u00e4iss\u00e4 laitteissa materiaaleja k\u00e4ytet\u00e4\u00e4n ohuina kerroksina tai kalvoina, joiden paksuus voi vaihdella muutamista nano- metreist\u00e4 muutamiin mikrometreihin. Ohutkalvojen l\u00e4mm\u00f6njohtavuutta voidaan mitata kolme-omega-menetelm\u00e4ll\u00e4. Kolme-omega-menetelm\u00e4ss\u00e4 n\u00e4ytteen pinnalle valmistettu metallijohdin toimii resistiivisen\u00e4 l\u00e4mmittimen\u00e4. Metallil\u00e4mmittimen l\u00e4pi taajuudella \u03c9 kulkeva vaihtovirta l\u00e4mmitt\u00e4\u00e4 metallia jaksollisesti ja aiheuttaa oskillaatioita metallilangan resistanssissa taajuudella 2\u03c9. Oskilloiva resistanssikomponentti yhdess\u00e4 langan l\u00e4pi kulkevan virran kanssa aiheuttaa 3\u03c9-taajuisen j\u00e4nnitekomponentin langan p\u00e4iden v\u00e4lille. \r\nT\u00e4m\u00e4n 3\u03c9-j\u00e4nnitteen suuruutta ja taajuusriippuvuutta voidaan k\u00e4ytt\u00e4\u00e4 n\u00e4ytteen termisten ominaisuuksien m\u00e4\u00e4ritt\u00e4miseen.\r\nMittausj\u00e4rjestely koostui tyhji\u00f6kammiosta ja r\u00e4\u00e4t\u00e4l\u00f6idyst\u00e4 n\u00e4ytea- lustasta, tarvittavista s\u00e4hk\u00f6isist\u00e4 komponenteista ja lukitusvahvisti- mista, joilla sy\u00f6tettiin piiriin vaihtoj\u00e4nnite ja mitattiin saatu ulostulos- ignaali. Datankeruu ja sy\u00f6tt\u00f6signaalin ohjaus suoritettiin erityisill\u00e4 LabVIEW-ohjelmilla.\r\nProjektin tarkoituksena oli rakentaa ja validoida kolme-omega- mittausj\u00e4rjestely mittaamalla 300 nanometri\u00e4 paksujen piidioksidi- kalvojen l\u00e4mm\u00f6njohtavuuksia. Vismuttia ja kultaa kokeiltiin l\u00e4mmitinlangan materiaalina, koska niill\u00e4 on huomattava resistiivisyyden l\u00e4mp\u00f6tilavaste, vismutilla aina muutaman kelvinin l\u00e4mp\u00f6tiloihin as- ti. Data-analyysi paljasti, ett\u00e4 saatua mittausdataa ei voida k\u00e4ytt\u00e4\u00e4 n\u00e4ytteiden l\u00e4mp\u00f6ominaisuuksien m\u00e4\u00e4ritt\u00e4miseen. Syy t\u00e4lle on todenn\u00e4k\u00f6isesti mittauspiirist\u00e4 ja signaalil\u00e4hteist\u00e4 aiheutuva h\u00e4iri\u00f6signaali.", "language": "fi", "element": "description", "qualifier": "abstract", "schema": "dc"}, {"key": "dc.description.provenance", "value": "Submitted using Plone Publishing form by Tuomas H\u00e4nninen (jutuhann) on 2013-09-10 06:43:09.774260. Form: Pro gradu -lomake (1 tekij\u00e4) (https://kirjasto.jyu.fi/julkaisut/julkaisulomakkeet/pro-gradu-lomake-1-tekijae). JyX data:", "language": "en", "element": "description", "qualifier": "provenance", "schema": "dc"}, {"key": "dc.description.provenance", "value": "Submitted by jyx lomake-julkaisija (jyx-julkaisija@noreply.fi) on 2013-09-10T06:43:10Z\r\nNo. of bitstreams: 2\r\nURN:NBN:fi:jyu-201309102266.pdf: 3919983 bytes, checksum: e538034b42de65f8d3af35b2b42e9a6f (MD5)\r\nlicense.html: 107 bytes, checksum: a7d86e598caa500b1b433bbb9dc8ef1c (MD5)", "language": "en", "element": "description", "qualifier": "provenance", "schema": "dc"}, {"key": "dc.description.provenance", "value": "Made available in DSpace on 2013-09-10T06:43:10Z (GMT). No. of bitstreams: 2\r\nURN:NBN:fi:jyu-201309102266.pdf: 3919983 bytes, checksum: e538034b42de65f8d3af35b2b42e9a6f (MD5)\r\nlicense.html: 107 bytes, checksum: a7d86e598caa500b1b433bbb9dc8ef1c (MD5)\r\n Previous issue date: 2013", "language": "en", "element": "description", "qualifier": "provenance", "schema": "dc"}, {"key": "dc.format.extent", "value": "1 verkkoaineisto.", "language": null, "element": "format", "qualifier": "extent", "schema": "dc"}, {"key": "dc.format.mimetype", "value": "application/pdf", "language": null, "element": "format", "qualifier": "mimetype", "schema": "dc"}, {"key": "dc.language.iso", "value": "eng", "language": null, "element": "language", "qualifier": "iso", "schema": "dc"}, {"key": "dc.rights", "value": "In Copyright", "language": "en", "element": "rights", "qualifier": null, "schema": "dc"}, {"key": "dc.subject.other", "value": "thermal conductivity", "language": "", "element": "subject", "qualifier": "other", "schema": "dc"}, {"key": "dc.subject.other", "value": "thin film", "language": "", "element": "subject", "qualifier": "other", "schema": "dc"}, {"key": "dc.subject.other", "value": "3-omega", "language": "", "element": "subject", "qualifier": "other", "schema": "dc"}, {"key": "dc.subject.other", "value": "heat transport", "language": "", "element": "subject", "qualifier": "other", "schema": "dc"}, {"key": "dc.title", "value": "Implementing the 3-omega technique for thermal conductivity measurements", "language": null, "element": "title", "qualifier": null, "schema": "dc"}, {"key": "dc.type", "value": "master thesis", "language": null, "element": "type", "qualifier": null, "schema": "dc"}, {"key": "dc.identifier.urn", "value": "URN:NBN:fi:jyu-201309102266", "language": null, "element": "identifier", "qualifier": "urn", "schema": "dc"}, {"key": "dc.type.dcmitype", "value": "Text", "language": "en", "element": "type", "qualifier": "dcmitype", "schema": "dc"}, {"key": "dc.type.ontasot", "value": "Pro gradu -tutkielma", "language": "fi", "element": "type", "qualifier": "ontasot", "schema": "dc"}, {"key": "dc.type.ontasot", "value": "Master\u2019s thesis", "language": "en", "element": "type", "qualifier": "ontasot", "schema": "dc"}, {"key": "dc.contributor.faculty", "value": "Matemaattis-luonnontieteellinen tiedekunta", "language": "fi", "element": "contributor", "qualifier": "faculty", "schema": "dc"}, {"key": "dc.contributor.faculty", "value": "Faculty of Sciences", "language": "en", "element": "contributor", "qualifier": "faculty", "schema": "dc"}, {"key": "dc.contributor.department", "value": "Fysiikan laitos", "language": "fi", "element": "contributor", "qualifier": "department", "schema": "dc"}, {"key": "dc.contributor.department", "value": "Department of Physics", "language": "en", "element": "contributor", "qualifier": "department", "schema": "dc"}, {"key": "dc.contributor.organization", "value": "University of Jyv\u00e4skyl\u00e4", "language": "en", "element": "contributor", "qualifier": "organization", "schema": "dc"}, {"key": "dc.contributor.organization", "value": "Jyv\u00e4skyl\u00e4n yliopisto", "language": "fi", "element": "contributor", "qualifier": "organization", "schema": "dc"}, {"key": "dc.subject.discipline", "value": "Fysiikka", "language": "fi", "element": "subject", "qualifier": "discipline", "schema": "dc"}, {"key": "dc.subject.discipline", "value": "Physics", "language": "en", "element": "subject", "qualifier": "discipline", "schema": "dc"}, {"key": "dc.date.updated", "value": "2013-09-10T06:43:10Z", "language": "", "element": "date", "qualifier": "updated", "schema": "dc"}, {"key": "dc.type.coar", "value": "http://purl.org/coar/resource_type/c_bdcc", "language": null, "element": "type", "qualifier": "coar", "schema": "dc"}, {"key": "dc.rights.accesslevel", "value": "openAccess", "language": "fi", "element": "rights", "qualifier": "accesslevel", "schema": "dc"}, {"key": "dc.type.publication", "value": "masterThesis", "language": null, "element": "type", "qualifier": "publication", "schema": "dc"}, {"key": "dc.subject.oppiainekoodi", "value": "4021", "language": null, "element": "subject", "qualifier": "oppiainekoodi", "schema": "dc"}, {"key": "dc.subject.yso", "value": "l\u00e4mm\u00f6n johtuminen", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "fysiikka", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.format.content", "value": "fulltext", "language": null, "element": "format", "qualifier": "content", "schema": "dc"}, {"key": "dc.rights.url", "value": "https://rightsstatements.org/page/InC/1.0/", "language": null, "element": "rights", "qualifier": "url", "schema": "dc"}, {"key": "dc.type.okm", "value": "G2", "language": null, "element": "type", "qualifier": "okm", "schema": "dc"}]
id jyx.123456789_42120
language eng
last_indexed 2025-03-31T20:01:50Z
main_date 2013-01-01T00:00:00Z
main_date_str 2013
online_boolean 1
online_urls_str_mv {"url":"https:\/\/jyx.jyu.fi\/bitstreams\/2d70787d-bf2a-40b2-b848-2cda08ecdd66\/download","text":"URN:NBN:fi:jyu-201309102266.pdf","source":"jyx","mediaType":"application\/pdf"}
publishDate 2013
record_format qdc
source_str_mv jyx
spellingShingle Hänninen, Tuomas Implementing the 3-omega technique for thermal conductivity measurements thermal conductivity thin film 3-omega heat transport Fysiikka Physics 4021 lämmön johtuminen fysiikka
title Implementing the 3-omega technique for thermal conductivity measurements
title_full Implementing the 3-omega technique for thermal conductivity measurements
title_fullStr Implementing the 3-omega technique for thermal conductivity measurements Implementing the 3-omega technique for thermal conductivity measurements
title_full_unstemmed Implementing the 3-omega technique for thermal conductivity measurements Implementing the 3-omega technique for thermal conductivity measurements
title_short Implementing the 3-omega technique for thermal conductivity measurements
title_sort implementing the 3 omega technique for thermal conductivity measurements
title_txtP Implementing the 3-omega technique for thermal conductivity measurements
topic thermal conductivity thin film 3-omega heat transport Fysiikka Physics 4021 lämmön johtuminen fysiikka
topic_facet 3-omega 4021 Fysiikka Physics fysiikka heat transport lämmön johtuminen thermal conductivity thin film
url https://jyx.jyu.fi/handle/123456789/42120 http://www.urn.fi/URN:NBN:fi:jyu-201309102266
work_keys_str_mv AT hänninentuomas implementingthe3omegatechniqueforthermalconductivitymeasurements