Graphene films for gas sensing applications

Gas detection at small concentrations is usually done using transition metal oxides. These semiconductors are, however, strongly dependent on parameters and conditions of growth and processing. Graphene attracts a big interest in science and technology due to its exceptional electric properties,...

Full description

Bibliographic Details
Main Author: Hämäläinen, Joni
Other Authors: Matemaattis-luonnontieteellinen tiedekunta, Faculty of Sciences, Fysiikan laitos, Department of Physics, University of Jyväskylä, Jyväskylän yliopisto
Format: Master's thesis
Language:eng
Published: 2013
Subjects:
Online Access: https://jyx.jyu.fi/handle/123456789/41779
_version_ 1828193124759896064
author Hämäläinen, Joni
author2 Matemaattis-luonnontieteellinen tiedekunta Faculty of Sciences Fysiikan laitos Department of Physics University of Jyväskylä Jyväskylän yliopisto
author_facet Hämäläinen, Joni Matemaattis-luonnontieteellinen tiedekunta Faculty of Sciences Fysiikan laitos Department of Physics University of Jyväskylä Jyväskylän yliopisto Hämäläinen, Joni Matemaattis-luonnontieteellinen tiedekunta Faculty of Sciences Fysiikan laitos Department of Physics University of Jyväskylä Jyväskylän yliopisto
author_sort Hämäläinen, Joni
datasource_str_mv jyx
description Gas detection at small concentrations is usually done using transition metal oxides. These semiconductors are, however, strongly dependent on parameters and conditions of growth and processing. Graphene attracts a big interest in science and technology due to its exceptional electric properties, and this truly 2-dimensional material has a great promise to be used as highly sensitive gas sensor. In this thesis, CVD and epitaxial graphene samples have been investigated in order to improve their sensitivity in gas sensing applications. The response of the sensor to different concentrations of detected gas was observed as a relative change of resistance of the sample. The aim of this study was to find optimal parameters in application of a graphene based gas sensor, and to optimize the contacting area between graphene and metal for achieving stable contacts with low resistance. Three different kinds of metal-graphene contacts and several different metals for contacting to graphene were studied. Different temperatures and humidity levels as well as irradiation with 370 nm UV-light were used to find optimal conditions for sensing NO2 gas. The sensitivity to O3 was also studied. An optimized sensor exhibited response to 20 ppb concentration of O3. In NO2 detection, the response was increased significantly by heating samples above 100 °C. In a tested epitaxial SiC sample, the resistive response to 10 ppb concentration of NO2 increased from 0.8 % in normal temperature to 1.4 % in elevated temperatures. Increasing of the temperature was also found to improve the linearity of response and to increase desorption rate of the molecules from graphene surface, allowing faster recovery after exposure. Annealed contacts with an additional graphite layer under the topmost metal layer, and with striped and dot-like geometry were found to have lower contact resistance (around 600 Ω) than a traditional contact with no additional patterning or graphite. Pienten kaasupitoisuuksien mittaus on perinteisesti suoritettu erilaisilla metalli-oksidiantureilla. Näiden puolijohdemateriaalien ominaisuudet ovat kuitenkin vahvasti riippuvia valmistusprosessin olosuhteista ja parametreistä. Grafeeni on tällä hetkellä tiedeyhteisön mielenkiinnon kohteena erikoisten sähköisten ominaisuuksiensa vuoksi. Tämä kaksiulotteinen materiaali tarjoaa mahdollisuuden erittäin pienien kaasupitoisuuksien tarkkaan mittaamiseen. Tässä työssä CVD- ja epitaksikasvatettuja grafeeninäytteitä on tutkittu niiden kaasuntunnistuskyvyn parantamiseksi. Myös kolmea erilaista metalli-grafeeni-kontaktia ja useita eri metalliyhdistelmiä tutkittiin. Tämän työn tavoitteena oli löytää parhaat mahdolliset ympäristöolosuhteet grafeeniantureiden resistiivisen vasteen mittaamiseen perustuvia kaasutunnistussovelluksia varten sekä pienentää kontaktiresistanssia ja parantaa metalligrafeeni- kontaktien luotettavuutta. Optimaalisten olosuhteiden löytämiseksi grafeenin herkkyyttä NO2-kaasulle testattiin eri lämpötiloissa, eri kosteusolosuhteissa ja 370 nm UVsäteilyn aikana. Grafeenin herkkyyttä O3-kaasulle tutkittiin myös. 20 miljardisosan (ppb) O3- pitoisuus riitti aiheuttamaan huomattavan muutoksen grafeenin resistanssissa. NO2- mittauksissa resistiivistä vastetta eri kaasupitoisuuksille pystyttiin parantamaan huomattavasti lämmittämällä näytteitä yli 100 °C lämpötilaan. Resistanssin muutos huoneenlämmössä oli noin 0.8 % ja lämmityksen jälkeen noin 1.4 % epitaksikasvatetulle näytteelle 10 ppb:n NO2- konsentraatiota mitattaessa. Korkeat lämpötilat myös paransivat vasteen lineaarisuutta ja nopeuttivat grafeenipinnalle adsorpoituneiden molekyylien desorptiota, puhdistaen grafeenin pintaa ja mahdollistaen nopean palautumisen altistuksesta kaasulle. Lämpökäsitellyt kontaktit ja grafiittikerros ylimmän metallikerroksen alla pienensivät kontaktiresistanssia. Pistemäisillä ja sormimaisilla kontaktityypeillä saatiin kontaktiresistanssia pienennettyä verrattuna perinteiseen suoraan kontaktipintaan. Sormimaisella, kahdesti lämpökäsitellyllä kontaktilla, jossa oli grafiittikerros ylimmän metallikerroksen alla, kontaktiresistanssi oli pienimmillään noin 600 Ω.
first_indexed 2023-03-22T09:56:52Z
format Pro gradu
free_online_boolean 1
fullrecord [{"key": "dc.contributor.author", "value": "H\u00e4m\u00e4l\u00e4inen, Joni", "language": null, "element": "contributor", "qualifier": "author", "schema": "dc"}, {"key": "dc.date.accessioned", "value": "2013-06-15T10:00:12Z", "language": "", "element": "date", "qualifier": "accessioned", "schema": "dc"}, {"key": "dc.date.available", "value": "2013-06-15T10:00:12Z", "language": "", "element": "date", "qualifier": "available", "schema": "dc"}, {"key": "dc.date.issued", "value": "2013", "language": null, "element": "date", "qualifier": "issued", "schema": "dc"}, {"key": "dc.identifier.other", "value": "oai:jykdok.linneanet.fi:1270152", "language": null, "element": "identifier", "qualifier": "other", "schema": "dc"}, {"key": "dc.identifier.uri", "value": "https://jyx.jyu.fi/handle/123456789/41779", "language": "", "element": "identifier", "qualifier": "uri", "schema": "dc"}, {"key": "dc.description.abstract", "value": "Gas detection at small concentrations is usually done using transition metal oxides. These\r\nsemiconductors are, however, strongly dependent on parameters and conditions of growth\r\nand processing. Graphene attracts a big interest in science and technology due to its\r\nexceptional electric properties, and this truly 2-dimensional material has a great promise to be used as highly sensitive gas sensor. In this thesis, CVD and epitaxial graphene samples have been investigated in order to improve their sensitivity in gas sensing applications. The response of the sensor to different concentrations of detected gas was observed as a relative change of resistance of the sample. The aim of this study was to find optimal parameters in application of a graphene based gas sensor, and to optimize the contacting area between\r\ngraphene and metal for achieving stable contacts with low resistance. Three different kinds of\r\nmetal-graphene contacts and several different metals for contacting to graphene were studied.\r\nDifferent temperatures and humidity levels as well as irradiation with 370 nm UV-light were\r\nused to find optimal conditions for sensing NO2 gas. The sensitivity to O3 was also studied. An\r\noptimized sensor exhibited response to 20 ppb concentration of O3. In NO2 detection, the\r\nresponse was increased significantly by heating samples above 100 \u00b0C. In a tested epitaxial\r\nSiC sample, the resistive response to 10 ppb concentration of NO2 increased from 0.8 % in\r\nnormal temperature to 1.4 % in elevated temperatures. Increasing of the temperature was also\r\nfound to improve the linearity of response and to increase desorption rate of the molecules\r\nfrom graphene surface, allowing faster recovery after exposure. Annealed contacts with an\r\nadditional graphite layer under the topmost metal layer, and with striped and dot-like\r\ngeometry were found to have lower contact resistance (around 600 \u03a9) than a traditional\r\ncontact with no additional patterning or graphite.", "language": "en", "element": "description", "qualifier": "abstract", "schema": "dc"}, {"key": "dc.description.abstract", "value": "Pienten kaasupitoisuuksien mittaus on perinteisesti suoritettu erilaisilla metalli-oksidiantureilla.\r\nN\u00e4iden puolijohdemateriaalien ominaisuudet ovat kuitenkin vahvasti riippuvia\r\nvalmistusprosessin olosuhteista ja parametreist\u00e4. Grafeeni on t\u00e4ll\u00e4 hetkell\u00e4 tiedeyhteis\u00f6n\r\nmielenkiinnon kohteena erikoisten s\u00e4hk\u00f6isten ominaisuuksiensa vuoksi. T\u00e4m\u00e4 kaksiulotteinen\r\nmateriaali tarjoaa mahdollisuuden eritt\u00e4in pienien kaasupitoisuuksien tarkkaan mittaamiseen.\r\nT\u00e4ss\u00e4 ty\u00f6ss\u00e4 CVD- ja epitaksikasvatettuja grafeenin\u00e4ytteit\u00e4 on tutkittu niiden\r\nkaasuntunnistuskyvyn parantamiseksi. My\u00f6s kolmea erilaista metalli-grafeeni-kontaktia ja\r\nuseita eri metalliyhdistelmi\u00e4 tutkittiin. T\u00e4m\u00e4n ty\u00f6n tavoitteena oli l\u00f6yt\u00e4\u00e4 parhaat mahdolliset\r\nymp\u00e4rist\u00f6olosuhteet grafeeniantureiden resistiivisen vasteen mittaamiseen perustuvia\r\nkaasutunnistussovelluksia varten sek\u00e4 pienent\u00e4\u00e4 kontaktiresistanssia ja parantaa metalligrafeeni-\r\nkontaktien luotettavuutta. Optimaalisten olosuhteiden l\u00f6yt\u00e4miseksi grafeenin\r\nherkkyytt\u00e4 NO2-kaasulle testattiin eri l\u00e4mp\u00f6tiloissa, eri kosteusolosuhteissa ja 370 nm UVs\u00e4teilyn\r\naikana. Grafeenin herkkyytt\u00e4 O3-kaasulle tutkittiin my\u00f6s. 20 miljardisosan (ppb) O3-\r\npitoisuus riitti aiheuttamaan huomattavan muutoksen grafeenin resistanssissa. NO2-\r\nmittauksissa resistiivist\u00e4 vastetta eri kaasupitoisuuksille pystyttiin parantamaan huomattavasti\r\nl\u00e4mmitt\u00e4m\u00e4ll\u00e4 n\u00e4ytteit\u00e4 yli 100 \u00b0C l\u00e4mp\u00f6tilaan. Resistanssin muutos huoneenl\u00e4mm\u00f6ss\u00e4 oli\r\nnoin 0.8 % ja l\u00e4mmityksen j\u00e4lkeen noin 1.4 % epitaksikasvatetulle n\u00e4ytteelle 10 ppb:n NO2-\r\nkonsentraatiota mitattaessa. Korkeat l\u00e4mp\u00f6tilat my\u00f6s paransivat vasteen lineaarisuutta ja\r\nnopeuttivat grafeenipinnalle adsorpoituneiden molekyylien desorptiota, puhdistaen grafeenin\r\npintaa ja mahdollistaen nopean palautumisen altistuksesta kaasulle. L\u00e4mp\u00f6k\u00e4sitellyt kontaktit\r\nja grafiittikerros ylimm\u00e4n metallikerroksen alla pienensiv\u00e4t kontaktiresistanssia. Pistem\u00e4isill\u00e4\r\nja sormimaisilla kontaktityypeill\u00e4 saatiin kontaktiresistanssia pienennetty\u00e4 verrattuna\r\nperinteiseen suoraan kontaktipintaan. Sormimaisella, kahdesti l\u00e4mp\u00f6k\u00e4sitellyll\u00e4 kontaktilla,\r\njossa oli grafiittikerros ylimm\u00e4n metallikerroksen alla, kontaktiresistanssi oli pienimmill\u00e4\u00e4n\r\nnoin 600 \u03a9.", "language": "fi", "element": "description", "qualifier": "abstract", "schema": "dc"}, {"key": "dc.description.provenance", "value": "Submitted using Plone Publishing form by Joni H\u00e4m\u00e4l\u00e4inen (jojuhama) on 2013-06-15 10:00:10.062142. Form: Pro gradu -lomake (1 tekij\u00e4) (https://kirjasto.jyu.fi/julkaisut/julkaisulomakkeet/pro-gradu-lomake-1-tekijae). JyX data:", "language": "en", "element": "description", "qualifier": "provenance", "schema": "dc"}, {"key": "dc.description.provenance", "value": "Submitted by jyx lomake-julkaisija (jyx-julkaisija@noreply.fi) on 2013-06-15T10:00:12Z\r\nNo. of bitstreams: 2\r\nURN:NBN:fi:jyu-201306151982.pdf: 15341966 bytes, checksum: b365b2ee016efdb2d05284bfd868502f (MD5)\r\nlicense.html: 107 bytes, checksum: a7d86e598caa500b1b433bbb9dc8ef1c (MD5)", "language": "en", "element": "description", "qualifier": "provenance", "schema": "dc"}, {"key": "dc.description.provenance", "value": "Made available in DSpace on 2013-06-15T10:00:12Z (GMT). No. of bitstreams: 2\r\nURN:NBN:fi:jyu-201306151982.pdf: 15341966 bytes, checksum: b365b2ee016efdb2d05284bfd868502f (MD5)\r\nlicense.html: 107 bytes, checksum: a7d86e598caa500b1b433bbb9dc8ef1c (MD5)\r\n Previous issue date: 2013", "language": "en", "element": "description", "qualifier": "provenance", "schema": "dc"}, {"key": "dc.format.extent", "value": "1 verkkoaineisto.", "language": null, "element": "format", "qualifier": "extent", "schema": "dc"}, {"key": "dc.format.mimetype", "value": "application/pdf", "language": null, "element": "format", "qualifier": "mimetype", "schema": "dc"}, {"key": "dc.language.iso", "value": "eng", "language": null, "element": "language", "qualifier": "iso", "schema": "dc"}, {"key": "dc.rights", "value": "In Copyright", "language": "en", "element": "rights", "qualifier": null, "schema": "dc"}, {"key": "dc.subject.other", "value": "grafeeni", "language": "", "element": "subject", "qualifier": "other", "schema": "dc"}, {"key": "dc.subject.other", "value": "graphene", "language": "", "element": "subject", "qualifier": "other", "schema": "dc"}, {"key": "dc.subject.other", "value": "gas sensing", "language": "", "element": "subject", "qualifier": "other", "schema": "dc"}, {"key": "dc.subject.other", "value": "NO2", "language": "", "element": "subject", "qualifier": "other", "schema": "dc"}, {"key": "dc.subject.other", "value": "O3", "language": "", "element": "subject", "qualifier": "other", "schema": "dc"}, {"key": "dc.title", "value": "Graphene films for gas sensing applications", "language": null, "element": "title", "qualifier": null, "schema": "dc"}, {"key": "dc.type", "value": "master thesis", "language": null, "element": "type", "qualifier": null, "schema": "dc"}, {"key": "dc.identifier.urn", "value": "URN:NBN:fi:jyu-201306151982", "language": null, "element": "identifier", "qualifier": "urn", "schema": "dc"}, {"key": "dc.type.dcmitype", "value": "Text", "language": "en", "element": "type", "qualifier": "dcmitype", "schema": "dc"}, {"key": "dc.type.ontasot", "value": "Pro gradu -tutkielma", "language": "fi", "element": "type", "qualifier": "ontasot", "schema": "dc"}, {"key": "dc.type.ontasot", "value": "Master\u2019s thesis", "language": "en", "element": "type", "qualifier": "ontasot", "schema": "dc"}, {"key": "dc.contributor.faculty", "value": "Matemaattis-luonnontieteellinen tiedekunta", "language": "fi", "element": "contributor", "qualifier": "faculty", "schema": "dc"}, {"key": "dc.contributor.faculty", "value": "Faculty of Sciences", "language": "en", "element": "contributor", "qualifier": "faculty", "schema": "dc"}, {"key": "dc.contributor.department", "value": "Fysiikan laitos", "language": "fi", "element": "contributor", "qualifier": "department", "schema": "dc"}, {"key": "dc.contributor.department", "value": "Department of Physics", "language": "en", "element": "contributor", "qualifier": "department", "schema": "dc"}, {"key": "dc.contributor.organization", "value": "University of Jyv\u00e4skyl\u00e4", "language": "en", "element": "contributor", "qualifier": "organization", "schema": "dc"}, {"key": "dc.contributor.organization", "value": "Jyv\u00e4skyl\u00e4n yliopisto", "language": "fi", "element": "contributor", "qualifier": "organization", "schema": "dc"}, {"key": "dc.subject.discipline", "value": "Fysiikka", "language": "fi", "element": "subject", "qualifier": "discipline", "schema": "dc"}, {"key": "dc.subject.discipline", "value": "Physics", "language": "en", "element": "subject", "qualifier": "discipline", "schema": "dc"}, {"key": "dc.date.updated", "value": "2013-06-15T10:00:12Z", "language": "", "element": "date", "qualifier": "updated", "schema": "dc"}, {"key": "dc.type.coar", "value": "http://purl.org/coar/resource_type/c_bdcc", "language": null, "element": "type", "qualifier": "coar", "schema": "dc"}, {"key": "dc.rights.accesslevel", "value": "openAccess", "language": "fi", "element": "rights", "qualifier": "accesslevel", "schema": "dc"}, {"key": "dc.type.publication", "value": "masterThesis", "language": null, "element": "type", "qualifier": "publication", "schema": "dc"}, {"key": "dc.subject.oppiainekoodi", "value": "4021", "language": null, "element": "subject", "qualifier": "oppiainekoodi", "schema": "dc"}, {"key": "dc.subject.yso", "value": "grafeeni", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "kaasut", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "mittaus", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "mittausmenetelm\u00e4t", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.format.content", "value": "fulltext", "language": null, "element": "format", "qualifier": "content", "schema": "dc"}, {"key": "dc.rights.url", "value": "https://rightsstatements.org/page/InC/1.0/", "language": null, "element": "rights", "qualifier": "url", "schema": "dc"}, {"key": "dc.type.okm", "value": "G2", "language": null, "element": "type", "qualifier": "okm", "schema": "dc"}]
id jyx.123456789_41779
language eng
last_indexed 2025-03-31T20:00:53Z
main_date 2013-01-01T00:00:00Z
main_date_str 2013
online_boolean 1
online_urls_str_mv {"url":"https:\/\/jyx.jyu.fi\/bitstreams\/1e3ec8ba-e1b6-41b1-8a15-46381631acfb\/download","text":"URN:NBN:fi:jyu-201306151982.pdf","source":"jyx","mediaType":"application\/pdf"}
publishDate 2013
record_format qdc
source_str_mv jyx
spellingShingle Hämäläinen, Joni Graphene films for gas sensing applications grafeeni graphene gas sensing NO2 O3 Fysiikka Physics 4021 kaasut mittaus mittausmenetelmät
title Graphene films for gas sensing applications
title_full Graphene films for gas sensing applications
title_fullStr Graphene films for gas sensing applications Graphene films for gas sensing applications
title_full_unstemmed Graphene films for gas sensing applications Graphene films for gas sensing applications
title_short Graphene films for gas sensing applications
title_sort graphene films for gas sensing applications
title_txtP Graphene films for gas sensing applications
topic grafeeni graphene gas sensing NO2 O3 Fysiikka Physics 4021 kaasut mittaus mittausmenetelmät
topic_facet 4021 Fysiikka NO2 O3 Physics gas sensing grafeeni graphene kaasut mittaus mittausmenetelmät
url https://jyx.jyu.fi/handle/123456789/41779 http://www.urn.fi/URN:NBN:fi:jyu-201306151982
work_keys_str_mv AT hämäläinenjoni graphenefilmsforgassensingapplications