Automatic subgenre classification of heavy metal music

Automatic genre classification of music has been of interest for researchers over a decade. Many success-ful methods and machine learning algorithms have been developed achieving reasonably good results. This thesis explores automatic sub-genre classification problem of one of the most popular meta-...

Full description

Bibliographic Details
Main Author: Tsatsishvili, Valeri
Other Authors: Humanistinen tiedekunta, Faculty of Humanities, Musiikin laitos, Department of Music, University of Jyväskylä, Jyväskylän yliopisto
Format: Master's thesis
Language:eng
Published: 2011
Subjects:
Online Access: https://jyx.jyu.fi/handle/123456789/37227
_version_ 1826225731584131072
author Tsatsishvili, Valeri
author2 Humanistinen tiedekunta Faculty of Humanities Musiikin laitos Department of Music University of Jyväskylä Jyväskylän yliopisto
author_facet Tsatsishvili, Valeri Humanistinen tiedekunta Faculty of Humanities Musiikin laitos Department of Music University of Jyväskylä Jyväskylän yliopisto Tsatsishvili, Valeri Humanistinen tiedekunta Faculty of Humanities Musiikin laitos Department of Music University of Jyväskylä Jyväskylän yliopisto
author_sort Tsatsishvili, Valeri
datasource_str_mv jyx
description Automatic genre classification of music has been of interest for researchers over a decade. Many success-ful methods and machine learning algorithms have been developed achieving reasonably good results. This thesis explores automatic sub-genre classification problem of one of the most popular meta-genres, heavy metal. To the best of my knowledge this is the first attempt to study the issue. Besides attempting automatic classification, the thesis investigates sub-genre taxonomy of heavy metal music, highlighting the historical origins and the most prominent musical features of its sub-genres. For classification, an algorithm proposed in (Barbedo & Lopes, 2007) was modified and implemented in MATLAB. The obtained results were compared to other commonly used classifiers such as AdaBoost and K-nearest neighbours. For each classifier two sets of features were employed selected using two strategies: Correlation based feature selection and Wrapper selection. A dataset consisting of 210 tracks representing seven genres was used for testing the classification algorithms. Implemented algorithm classified 37.1% of test samples correctly, which is significantly better performance than random classification (14.3%). However, it was not the best achieved result among the classifiers tested. The best result with correct classification rate of 45.7% was achieved by AdaBoost algorithm.
first_indexed 2023-03-22T09:59:52Z
format Pro gradu
free_online_boolean 1
fullrecord [{"key": "dc.contributor.author", "value": "Tsatsishvili, Valeri", "language": null, "element": "contributor", "qualifier": "author", "schema": "dc"}, {"key": "dc.date.accessioned", "value": "2012-01-19T06:12:14Z", "language": null, "element": "date", "qualifier": "accessioned", "schema": "dc"}, {"key": "dc.date.available", "value": "2012-01-19T06:12:14Z", "language": null, "element": "date", "qualifier": "available", "schema": "dc"}, {"key": "dc.date.issued", "value": "2011", "language": null, "element": "date", "qualifier": "issued", "schema": "dc"}, {"key": "dc.identifier.other", "value": "oai:jykdok.linneanet.fi:1192287", "language": null, "element": "identifier", "qualifier": "other", "schema": "dc"}, {"key": "dc.identifier.uri", "value": "https://jyx.jyu.fi/handle/123456789/37227", "language": null, "element": "identifier", "qualifier": "uri", "schema": "dc"}, {"key": "dc.description.abstract", "value": "Automatic genre classification of music has been of interest for researchers over a decade. Many success-ful methods and machine learning algorithms have been developed achieving reasonably good results. This thesis explores automatic sub-genre classification problem of one of the most popular meta-genres, heavy metal. To the best of my knowledge this is the first attempt to study the issue. Besides attempting automatic classification, the thesis investigates sub-genre taxonomy of heavy metal music, highlighting the historical origins and the most prominent musical features of its sub-genres. For classification, an algorithm proposed in (Barbedo & Lopes, 2007) was modified and implemented in MATLAB. The obtained results were compared to other commonly used classifiers such as AdaBoost and K-nearest neighbours. For each classifier two sets of features were employed selected using two strategies: Correlation based feature selection and Wrapper selection.\nA dataset consisting of 210 tracks representing seven genres was used for testing the classification algorithms. Implemented algorithm classified 37.1% of test samples correctly, which is significantly better performance than random classification (14.3%). However, it was not the best achieved result among the classifiers tested. The best result with correct classification rate of 45.7% was achieved by AdaBoost algorithm.", "language": null, "element": "description", "qualifier": "abstract", "schema": "dc"}, {"key": "dc.description.provenance", "value": "Submitted using Plone Publishing form by Miia Hakanen (mihakane) on 2012-01-19 06:12:12.295122. Form: Admin-lomake Pro gradu -t\u00f6ille (https://kirjasto.jyu.fi/julkaisut/julkaisulomakkeet/admin-lomake-pro-gradu-toille). JyX data:", "language": "en", "element": "description", "qualifier": "provenance", "schema": "dc"}, {"key": "dc.description.provenance", "value": "Submitted by jyx lomake-julkaisija (jyx-julkaisija@noreply.fi) on 2012-01-19T06:12:14Z\nNo. of bitstreams: 2\nURN:NBN:fi:jyu-201201191046.pdf: 2092269 bytes, checksum: 80c61c3d155cf9e4ce9c6d5bbb25238f (MD5)\nlicense.html: 107 bytes, checksum: a7d86e598caa500b1b433bbb9dc8ef1c (MD5)", "language": "en", "element": "description", "qualifier": "provenance", "schema": "dc"}, {"key": "dc.description.provenance", "value": "Made available in DSpace on 2012-01-19T06:12:14Z (GMT). No. of bitstreams: 2\nURN:NBN:fi:jyu-201201191046.pdf: 2092269 bytes, checksum: 80c61c3d155cf9e4ce9c6d5bbb25238f (MD5)\nlicense.html: 107 bytes, checksum: a7d86e598caa500b1b433bbb9dc8ef1c (MD5)\n Previous issue date: 2011", "language": "en", "element": "description", "qualifier": "provenance", "schema": "dc"}, {"key": "dc.format.extent", "value": "59 sivua", "language": null, "element": "format", "qualifier": "extent", "schema": "dc"}, {"key": "dc.format.mimetype", "value": "application/pdf", "language": null, "element": "format", "qualifier": "mimetype", "schema": "dc"}, {"key": "dc.language.iso", "value": "eng", "language": null, "element": "language", "qualifier": "iso", "schema": "dc"}, {"key": "dc.rights", "value": "In Copyright", "language": "en", "element": "rights", "qualifier": null, "schema": "dc"}, {"key": "dc.subject.other", "value": "Automatic genre classification", "language": "", "element": "subject", "qualifier": "other", "schema": "dc"}, {"key": "dc.subject.other", "value": "heavy metal", "language": "", "element": "subject", "qualifier": "other", "schema": "dc"}, {"key": "dc.subject.other", "value": "subgenre", "language": "", "element": "subject", "qualifier": "other", "schema": "dc"}, {"key": "dc.title", "value": "Automatic subgenre classification of heavy metal music", "language": null, "element": "title", "qualifier": null, "schema": "dc"}, {"key": "dc.type", "value": "master thesis", "language": null, "element": "type", "qualifier": null, "schema": "dc"}, {"key": "dc.identifier.urn", "value": "URN:NBN:fi:jyu-201201191046", "language": null, "element": "identifier", "qualifier": "urn", "schema": "dc"}, {"key": "dc.type.dcmitype", "value": "Text", "language": "en", "element": "type", "qualifier": "dcmitype", "schema": "dc"}, {"key": "dc.type.ontasot", "value": "Pro gradu -tutkielma", "language": "fi", "element": "type", "qualifier": "ontasot", "schema": "dc"}, {"key": "dc.type.ontasot", "value": "Master\u2019s thesis", "language": "en", "element": "type", "qualifier": "ontasot", "schema": "dc"}, {"key": "dc.contributor.faculty", "value": "Humanistinen tiedekunta", "language": "fi", "element": "contributor", "qualifier": "faculty", "schema": "dc"}, {"key": "dc.contributor.faculty", "value": "Faculty of Humanities", "language": "en", "element": "contributor", "qualifier": "faculty", "schema": "dc"}, {"key": "dc.contributor.department", "value": "Musiikin laitos", "language": "fi", "element": "contributor", "qualifier": "department", "schema": "dc"}, {"key": "dc.contributor.department", "value": "Department of Music", "language": "en", "element": "contributor", "qualifier": "department", "schema": "dc"}, {"key": "dc.contributor.organization", "value": "University of Jyv\u00e4skyl\u00e4", "language": "en", "element": "contributor", "qualifier": "organization", "schema": "dc"}, {"key": "dc.contributor.organization", "value": "Jyv\u00e4skyl\u00e4n yliopisto", "language": "fi", "element": "contributor", "qualifier": "organization", "schema": "dc"}, {"key": "dc.subject.discipline", "value": "Music, Mind and Technology (maisteriohjelma)", "language": "fi", "element": "subject", "qualifier": "discipline", "schema": "dc"}, {"key": "dc.subject.discipline", "value": "Master's Degree Programme in Music, Mind and Technology", "language": "en", "element": "subject", "qualifier": "discipline", "schema": "dc"}, {"key": "dc.date.updated", "value": "2012-01-19T06:12:14Z", "language": null, "element": "date", "qualifier": "updated", "schema": "dc"}, {"key": "dc.type.coar", "value": "http://purl.org/coar/resource_type/c_bdcc", "language": null, "element": "type", "qualifier": "coar", "schema": "dc"}, {"key": "dc.rights.accesslevel", "value": "openAccess", "language": "fi", "element": "rights", "qualifier": "accesslevel", "schema": "dc"}, {"key": "dc.type.publication", "value": "masterThesis", "language": null, "element": "type", "qualifier": "publication", "schema": "dc"}, {"key": "dc.subject.oppiainekoodi", "value": "3054", "language": null, "element": "subject", "qualifier": "oppiainekoodi", "schema": "dc"}, {"key": "dc.subject.yso", "value": "heavy rock", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "musiikki", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "genret", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "luokitukset", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.format.content", "value": "fulltext", "language": null, "element": "format", "qualifier": "content", "schema": "dc"}, {"key": "dc.rights.url", "value": "https://rightsstatements.org/page/InC/1.0/", "language": null, "element": "rights", "qualifier": "url", "schema": "dc"}, {"key": "dc.type.okm", "value": "G2", "language": null, "element": "type", "qualifier": "okm", "schema": "dc"}]
id jyx.123456789_37227
language eng
last_indexed 2025-02-18T10:55:44Z
main_date 2011-01-01T00:00:00Z
main_date_str 2011
online_boolean 1
online_urls_str_mv {"url":"https:\/\/jyx.jyu.fi\/bitstreams\/14f0273f-e4f6-454a-a2ff-ab8a91cf73a1\/download","text":"URN:NBN:fi:jyu-201201191046.pdf","source":"jyx","mediaType":"application\/pdf"}
publishDate 2011
record_format qdc
source_str_mv jyx
spellingShingle Tsatsishvili, Valeri Automatic subgenre classification of heavy metal music Automatic genre classification heavy metal subgenre Music, Mind and Technology (maisteriohjelma) Master's Degree Programme in Music, Mind and Technology 3054 heavy rock musiikki genret luokitukset
title Automatic subgenre classification of heavy metal music
title_full Automatic subgenre classification of heavy metal music
title_fullStr Automatic subgenre classification of heavy metal music Automatic subgenre classification of heavy metal music
title_full_unstemmed Automatic subgenre classification of heavy metal music Automatic subgenre classification of heavy metal music
title_short Automatic subgenre classification of heavy metal music
title_sort automatic subgenre classification of heavy metal music
title_txtP Automatic subgenre classification of heavy metal music
topic Automatic genre classification heavy metal subgenre Music, Mind and Technology (maisteriohjelma) Master's Degree Programme in Music, Mind and Technology 3054 heavy rock musiikki genret luokitukset
topic_facet 3054 Automatic genre classification Master's Degree Programme in Music, Mind and Technology Music, Mind and Technology (maisteriohjelma) genret heavy metal heavy rock luokitukset musiikki subgenre
url https://jyx.jyu.fi/handle/123456789/37227 http://www.urn.fi/URN:NBN:fi:jyu-201201191046
work_keys_str_mv AT tsatsishvilivaleri automaticsubgenreclassificationofheavymetalmusic