Brain-body coupling investigating heart rate variability states with magnetoencephalography across respiratory patterns

Unravelling the riddles of the constant interplay between modulatory pathways between the brain and the body is important for various applications in research and clinical fields. Unveiling how information related to autonomic regulation is encoded in the brain can be translated into a better unde...

Full description

Bibliographic Details
Main Author: Gutiérrez Lomelí, Aracely
Other Authors: Kasvatustieteiden ja psykologian tiedekunta, Faculty of Education and Psychology, Psykologian laitos, Department of Psychology, Jyväskylän yliopisto, University of Jyväskylä
Format: Master's thesis
Language:eng
Published: 2025
Subjects:
Online Access: https://jyx.jyu.fi/handle/123456789/103800
_version_ 1836034467397894144
author Gutiérrez Lomelí, Aracely
author2 Kasvatustieteiden ja psykologian tiedekunta Faculty of Education and Psychology Psykologian laitos Department of Psychology Jyväskylän yliopisto University of Jyväskylä
author_facet Gutiérrez Lomelí, Aracely Kasvatustieteiden ja psykologian tiedekunta Faculty of Education and Psychology Psykologian laitos Department of Psychology Jyväskylän yliopisto University of Jyväskylä Gutiérrez Lomelí, Aracely Kasvatustieteiden ja psykologian tiedekunta Faculty of Education and Psychology Psykologian laitos Department of Psychology Jyväskylän yliopisto University of Jyväskylä
author_sort Gutiérrez Lomelí, Aracely
datasource_str_mv jyx
description Unravelling the riddles of the constant interplay between modulatory pathways between the brain and the body is important for various applications in research and clinical fields. Unveiling how information related to autonomic regulation is encoded in the brain can be translated into a better understanding of emotional and physiological traits by investigating the recorded neural signals. Previous studies show heart and respiratory coupling with neural spectral patterns, suggesting heart rate variability (HRV) can be decoded from brain signals. This study aimed at decoding HRV states, particularly its low frequency (LF) component, using the spectral content in neural signals recorded with magnetoencephalography (MEG) during so called resting state. The data collection involved 33 participants, with electrocardiogram (ECG) signals recorded simultaneously with MEG. This study's novelty lies in a data-driven segmentation approach to epoch MEG and ECG signals according to natural HRV fluctuations. Eighteen variables were assessed in a logistic regression machine learning (ML) model, where each MEG segment was a sample, and model features consisted of MEG power across five frequency bands (delta, theta, alpha, beta, and gamma). The variables included three respiratory patterns (Deep breathing with eyes open, spontaneous breathing with eyes closed, spontaneous breathing with eyes open) × three MEG sensor types (magnetometers, gradiometers, or both) × two ECG segmentation methods (increasing and decreasing HRV gradient trends, or high and low HRV segments). The decodability of HRV variability from MEG data could not be confirmed since models performed at chance level. Future research suggestions are provided to improve the results.
first_indexed 2025-06-19T20:01:29Z
format Pro gradu
free_online_boolean 1
fullrecord [{"key": "dc.contributor.advisor", "value": "Kujala, Jan", "language": null, "element": "contributor", "qualifier": "advisor", "schema": "dc"}, {"key": "dc.contributor.advisor", "value": "Parviainen, Tiina", "language": null, "element": "contributor", "qualifier": "advisor", "schema": "dc"}, {"key": "dc.contributor.author", "value": "Guti\u00e9rrez Lomel\u00ed, Aracely", "language": null, "element": "contributor", "qualifier": "author", "schema": "dc"}, {"key": "dc.date.accessioned", "value": "2025-06-19T09:23:36Z", "language": null, "element": "date", "qualifier": "accessioned", "schema": "dc"}, {"key": "dc.date.available", "value": "2025-06-19T09:23:36Z", "language": null, "element": "date", "qualifier": "available", "schema": "dc"}, {"key": "dc.date.issued", "value": "2025", "language": null, "element": "date", "qualifier": "issued", "schema": "dc"}, {"key": "dc.identifier.uri", "value": "https://jyx.jyu.fi/handle/123456789/103800", "language": null, "element": "identifier", "qualifier": "uri", "schema": "dc"}, {"key": "dc.description.abstract", "value": "", "language": "fi", "element": "description", "qualifier": "abstract", "schema": "dc"}, {"key": "dc.description.abstract", "value": "Unravelling the riddles of the constant interplay between modulatory pathways between the brain and the body is important for various applications in research and clinical fields. Unveiling how information related to autonomic regulation is encoded in the brain can be translated into a better understanding of emotional and physiological traits by investigating the recorded neural signals. \n\nPrevious studies show heart and respiratory coupling with neural spectral patterns, suggesting heart rate variability (HRV) can be decoded from brain signals. This study aimed at decoding HRV states, particularly its low frequency (LF) component, using the spectral content in neural signals recorded with magnetoencephalography (MEG) during so called resting state. The data collection involved 33 participants, with electrocardiogram (ECG) signals recorded simultaneously with MEG. This study's novelty lies in a data-driven segmentation approach to epoch MEG and ECG signals according to natural HRV fluctuations. \n\nEighteen variables were assessed in a logistic regression machine learning (ML) model, where each MEG segment was a sample, and model features consisted of MEG power across five frequency bands (delta, theta, alpha, beta, and gamma). The variables included three respiratory patterns (Deep breathing with eyes open, spontaneous breathing with eyes closed, spontaneous breathing with eyes open) \u00d7 three MEG sensor types (magnetometers, gradiometers, or both) \u00d7 two ECG segmentation methods (increasing and decreasing HRV gradient trends, or high and low HRV segments). The decodability of HRV variability from MEG data could not be confirmed since models performed at chance level. Future research suggestions are provided to improve the results.", "language": "en", "element": "description", "qualifier": "abstract", "schema": "dc"}, {"key": "dc.description.provenance", "value": "Submitted by Paivi Vuorio (paelvuor@jyu.fi) on 2025-06-19T09:23:36Z\nNo. of bitstreams: 0", "language": "en", "element": "description", "qualifier": "provenance", "schema": "dc"}, {"key": "dc.description.provenance", "value": "Made available in DSpace on 2025-06-19T09:23:36Z (GMT). No. of bitstreams: 0\n Previous issue date: 2025", "language": "en", "element": "description", "qualifier": "provenance", "schema": "dc"}, {"key": "dc.format.extent", "value": "57", "language": null, "element": "format", "qualifier": "extent", "schema": "dc"}, {"key": "dc.language.iso", "value": "eng", "language": null, "element": "language", "qualifier": "iso", "schema": "dc"}, {"key": "dc.rights", "value": "In Copyright", "language": null, "element": "rights", "qualifier": null, "schema": "dc"}, {"key": "dc.subject.other", "value": "heart rate variability", "language": null, "element": "subject", "qualifier": "other", "schema": "dc"}, {"key": "dc.subject.other", "value": "Machine Learning decoding", "language": null, "element": "subject", "qualifier": "other", "schema": "dc"}, {"key": "dc.subject.other", "value": "heart-brain coupling", "language": null, "element": "subject", "qualifier": "other", "schema": "dc"}, {"key": "dc.subject.other", "value": "respiratory patterns", "language": null, "element": "subject", "qualifier": "other", "schema": "dc"}, {"key": "dc.title", "value": "Brain-body coupling : investigating heart rate variability states with magnetoencephalography across respiratory patterns", "language": null, "element": "title", "qualifier": null, "schema": "dc"}, {"key": "dc.type", "value": "master thesis", "language": null, "element": "type", "qualifier": null, "schema": "dc"}, {"key": "dc.identifier.urn", "value": "URN:NBN:fi:jyu-202506195583", "language": null, "element": "identifier", "qualifier": "urn", "schema": "dc"}, {"key": "dc.contributor.faculty", "value": "Kasvatustieteiden ja psykologian tiedekunta", "language": "fi", "element": "contributor", "qualifier": "faculty", "schema": "dc"}, {"key": "dc.contributor.faculty", "value": "Faculty of Education and Psychology", "language": "en", "element": "contributor", "qualifier": "faculty", "schema": "dc"}, {"key": "dc.contributor.department", "value": "Psykologian laitos", "language": "fi", "element": "contributor", "qualifier": "department", "schema": "dc"}, {"key": "dc.contributor.department", "value": "Department of Psychology", "language": "en", "element": "contributor", "qualifier": "department", "schema": "dc"}, {"key": "dc.contributor.organization", "value": "Jyv\u00e4skyl\u00e4n yliopisto", "language": null, "element": "contributor", "qualifier": "organization", "schema": "dc"}, {"key": "dc.contributor.organization", "value": "University of Jyv\u00e4skyl\u00e4", "language": null, "element": "contributor", "qualifier": "organization", "schema": "dc"}, {"key": "dc.subject.discipline", "value": "Psykologia", "language": "fi", "element": "subject", "qualifier": "discipline", "schema": "dc"}, {"key": "dc.subject.discipline", "value": "Psychology", "language": "en", "element": "subject", "qualifier": "discipline", "schema": "dc"}, {"key": "dc.type.coar", "value": "http://purl.org/coar/resource_type/c_bdcc", "language": null, "element": "type", "qualifier": "coar", "schema": "dc"}, {"key": "dc.rights.copyright", "value": "\u00a9 The Author(s)", "language": "fi", "element": "rights", "qualifier": "copyright", "schema": "dc"}, {"key": "dc.rights.accesslevel", "value": "openAccess", "language": null, "element": "rights", "qualifier": "accesslevel", "schema": "dc"}, {"key": "dc.type.publication", "value": "masterThesis", "language": null, "element": "type", "qualifier": "publication", "schema": "dc"}, {"key": "dc.subject.yso", "value": "MEG", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.rights.url", "value": "https://rightsstatements.org/page/InC/1.0/", "language": null, "element": "rights", "qualifier": "url", "schema": "dc"}]
id jyx.123456789_103800
language eng
last_indexed 2025-06-19T20:01:29Z
main_date 2025-01-01T00:00:00Z
main_date_str 2025
online_boolean 1
online_urls_str_mv {"url":"https:\/\/jyx.jyu.fi\/bitstreams\/6b1d06db-c680-4f17-98e0-8517b1e136d7\/download","text":"URN:NBN:fi:jyu-202506195583.pdf","source":"jyx","mediaType":"application\/pdf"}
publishDate 2025
record_format qdc
source_str_mv jyx
spellingShingle Gutiérrez Lomelí, Aracely Brain-body coupling : investigating heart rate variability states with magnetoencephalography across respiratory patterns heart rate variability Machine Learning decoding heart-brain coupling respiratory patterns Psykologia Psychology MEG
title Brain-body coupling : investigating heart rate variability states with magnetoencephalography across respiratory patterns
title_full Brain-body coupling : investigating heart rate variability states with magnetoencephalography across respiratory patterns
title_fullStr Brain-body coupling : investigating heart rate variability states with magnetoencephalography across respiratory patterns Brain-body coupling : investigating heart rate variability states with magnetoencephalography across respiratory patterns
title_full_unstemmed Brain-body coupling : investigating heart rate variability states with magnetoencephalography across respiratory patterns Brain-body coupling : investigating heart rate variability states with magnetoencephalography across respiratory patterns
title_short Brain-body coupling
title_sort brain body coupling investigating heart rate variability states with magnetoencephalography across respiratory patterns
title_sub investigating heart rate variability states with magnetoencephalography across respiratory patterns
title_txtP Brain-body coupling : investigating heart rate variability states with magnetoencephalography across respiratory patterns
topic heart rate variability Machine Learning decoding heart-brain coupling respiratory patterns Psykologia Psychology MEG
topic_facet MEG Machine Learning decoding Psychology Psykologia heart rate variability heart-brain coupling respiratory patterns
url https://jyx.jyu.fi/handle/123456789/103800 http://www.urn.fi/URN:NBN:fi:jyu-202506195583
work_keys_str_mv AT gutierrezlomeliaracely brainbodycouplinginvestigatingheartratevariabilitystateswithmagnetoenceph