Manifold learning from structured kernels and out of sample extensions

Diffusion Maps (DM) and other kernel methods are utilized for the analysis of high dimensional big data. The DM method uses a Markovian diffusion process to model and analyze data. This thesis proposes a combination of techniques aimed to extend kernel methods to reduce their associated computationa...

Täydet tiedot

Bibliografiset tiedot
Päätekijä: Salhov, Moshe
Aineistotyyppi: Väitöskirja
Kieli:eng
Julkaistu: 2014
Aiheet:
Linkit: https://jyx.jyu.fi/handle/123456789/103733
_version_ 1835309668750065664
author Salhov, Moshe
author_facet Salhov, Moshe Salhov, Moshe
author_sort Salhov, Moshe
datasource_str_mv jyx
description Diffusion Maps (DM) and other kernel methods are utilized for the analysis of high dimensional big data. The DM method uses a Markovian diffusion process to model and analyze data. This thesis proposes a combination of techniques aimed to extend kernel methods to reduce their associated computational complexity. In many cases, the performance of a spectral embedding based learning mechanism is limited due to two factors. The first factor is the use of a distance metric among the multidimensional data points in the kernel construction. The second factor is the computational complexity of the kernel construction and its spectral decomposition. To improve the first factor, this thesis proposes to extend the scalar relations used in kernel computational methodologies such as DM framework to matrix type computations, which can encompass multidimensional similarities between local neighborhoods of multidimensional data points on the manifold. Furthermore, the use of multidimensional similarities might result in a bigger kernel that significantly increases its computational complexity. In order to reduce the computational complexity, which is associated with both DM kernel or its proposed extension, this thesis proposes several dictionary based constructions to efficiently approximate the corresponding spectral decomposition efficiently of DM and its proposed patch based extension. This work is supplemented by providing an out-of-sample extension for vector fields.
first_indexed 2025-06-18T20:04:50Z
format Väitöskirja
fullrecord [{"key": "dc.contributor.author", "value": "Salhov, Moshe", "language": null, "element": "contributor", "schema": "dc", "qualifier": "author"}, {"key": "dc.date.accessioned", "value": "2025-06-18T10:51:53Z", "language": null, "element": "date", "schema": "dc", "qualifier": "accessioned"}, {"key": "dc.date.available", "value": "2025-06-18T10:51:53Z", "language": null, "element": "date", "schema": "dc", "qualifier": "available"}, {"key": "dc.date.issued", "value": "2014", "language": null, "element": "date", "schema": "dc", "qualifier": "issued"}, {"key": "dc.identifier.isbn", "value": "978-952-86-0821-9", "language": null, "element": "identifier", "schema": "dc", "qualifier": "isbn"}, {"key": "dc.identifier.uri", "value": "https://jyx.jyu.fi/handle/123456789/103733", "language": null, "element": "identifier", "schema": "dc", "qualifier": "uri"}, {"key": "dc.description.abstract", "value": "Diffusion Maps (DM) and other kernel methods are utilized for the analysis of high dimensional big data. The DM method uses a Markovian diffusion process to model and analyze data. This thesis proposes a combination of techniques aimed to extend kernel methods to reduce their associated computational complexity. In many cases, the performance of a spectral embedding based learning mechanism is limited due to two factors. The first factor is the use of a distance metric among the multidimensional data points in the kernel construction. The second factor is the computational complexity of the kernel construction and its spectral decomposition. To improve the first factor, this thesis proposes to extend the scalar relations used in kernel computational methodologies such as DM framework to matrix type computations, which can encompass multidimensional similarities between local neighborhoods of multidimensional data points on the manifold. Furthermore, the use of multidimensional similarities might result in a bigger kernel that significantly increases its computational complexity. In order to reduce the computational complexity, which is associated with both DM kernel or its proposed extension, this thesis proposes several dictionary based constructions to efficiently approximate the corresponding spectral decomposition efficiently of DM and its proposed patch based extension. This work is supplemented by providing an out-of-sample extension for vector fields.", "language": "en", "element": "description", "schema": "dc", "qualifier": "abstract"}, {"key": "dc.description.provenance", "value": "Submitted by Harri Hirvi (hirvi@jyu.fi) on 2025-06-18T10:51:53Z\nNo. of bitstreams: 0", "language": "en", "element": "description", "schema": "dc", "qualifier": "provenance"}, {"key": "dc.description.provenance", "value": "Made available in DSpace on 2025-06-18T10:51:53Z (GMT). No. of bitstreams: 0\n Previous issue date: 2014", "language": "en", "element": "description", "schema": "dc", "qualifier": "provenance"}, {"key": "dc.format.mimetype", "value": "application/pdf", "language": null, "element": "format", "schema": "dc", "qualifier": "mimetype"}, {"key": "dc.language.iso", "value": "eng", "language": null, "element": "language", "schema": "dc", "qualifier": "iso"}, {"key": "dc.relation.ispartofseries", "value": "Jyv\u00e4skyl\u00e4 studies in computing", "language": null, "element": "relation", "schema": "dc", "qualifier": "ispartofseries"}, {"key": "dc.rights", "value": "In Copyright", "language": null, "element": "rights", "schema": "dc", "qualifier": null}, {"key": "dc.subject.other", "value": "data", "language": null, "element": "subject", "schema": "dc", "qualifier": "other"}, {"key": "dc.subject.other", "value": "big data", "language": null, "element": "subject", "schema": "dc", "qualifier": "other"}, {"key": "dc.subject.other", "value": "analyysimenetelm\u00e4t", "language": null, "element": "subject", "schema": "dc", "qualifier": "other"}, {"key": "dc.subject.other", "value": "algoritmit", "language": null, "element": "subject", "schema": "dc", "qualifier": "other"}, {"key": "dc.subject.other", "value": "koneoppiminen", "language": null, "element": "subject", "schema": "dc", "qualifier": "other"}, {"key": "dc.subject.other", "value": "data analysis", "language": null, "element": "subject", "schema": "dc", "qualifier": "other"}, {"key": "dc.subject.other", "value": "manifold learning", "language": null, "element": "subject", "schema": "dc", "qualifier": "other"}, {"key": "dc.subject.other", "value": "diffusion maps", "language": null, "element": "subject", "schema": "dc", "qualifier": "other"}, {"key": "dc.title", "value": "Manifold learning from structured kernels and out of sample extensions", "language": null, "element": "title", "schema": "dc", "qualifier": null}, {"key": "dc.type", "value": "doctoral thesis", "language": null, "element": "type", "schema": "dc", "qualifier": null}, {"key": "dc.identifier.urn", "value": "URN:ISBN:978-952-86-0821-9", "language": null, "element": "identifier", "schema": "dc", "qualifier": "urn"}, {"key": "dc.type.coar", "value": "http://purl.org/coar/resource_type/c_db06", "language": null, "element": "type", "schema": "dc", "qualifier": "coar"}, {"key": "dc.relation.numberinseries", "value": "209", "language": null, "element": "relation", "schema": "dc", "qualifier": "numberinseries"}, {"key": "dc.rights.copyright", "value": "\u00a9 The Author & University of Jyv\u00e4skyl\u00e4", "language": null, "element": "rights", "schema": "dc", "qualifier": "copyright"}, {"key": "dc.rights.accesslevel", "value": "restrictedAccess", "language": null, "element": "rights", "schema": "dc", "qualifier": "accesslevel"}, {"key": "dc.type.publication", "value": "doctoralThesis", "language": null, "element": "type", "schema": "dc", "qualifier": "publication"}, {"key": "dc.format.content", "value": "fulltext", "language": null, "element": "format", "schema": "dc", "qualifier": "content"}, {"key": "dc.rights.url", "value": "https://rightsstatements.org/page/InC/1.0/", "language": null, "element": "rights", "schema": "dc", "qualifier": "url"}, {"key": "dc.rights.accessrights", "value": "Aineistoon p\u00e4\u00e4sy\u00e4 on rajoitettu tekij\u00e4noikeussyist\u00e4. Aineisto on luettavissa Jyv\u00e4skyl\u00e4n yliopiston kirjaston <a href=\"https://www.jyu.fi/fi/osc/kirjasto/tyoskentelytilat/laitteet-ja-tilat#toc-jyx-ty-asema\">arkistoty\u00f6asemalta</a>.", "language": "fi", "element": "rights", "schema": "dc", "qualifier": "accessrights"}, {"key": "dc.rights.accessrights", "value": "<br><br>This material has a restricted access due to copyright reasons. It can be read at the <a href=\"https://www.jyu.fi/fi/osc/kirjasto/tyoskentelytilat/laitteet-ja-tilat#toc-jyx-ty-asema\">workstation</a> at Jyv\u00e4skyl\u00e4 University Library reserved for the use of archival materials.", "language": "en", "element": "rights", "schema": "dc", "qualifier": "accessrights"}, {"key": "dc.date.digitised", "value": "2025", "language": null, "element": "date", "schema": "dc", "qualifier": "digitised"}, {"key": "dc.type.okm", "value": "G4", "language": null, "element": "type", "schema": "dc", "qualifier": "okm"}]
id jyx.123456789_103733
language eng
last_indexed 2025-06-18T20:04:50Z
main_date 2014-01-01T00:00:00Z
main_date_str 2014
publishDate 2014
record_format qdc
source_str_mv jyx
spellingShingle Salhov, Moshe Manifold learning from structured kernels and out of sample extensions data big data analyysimenetelmät algoritmit koneoppiminen data analysis manifold learning diffusion maps
title Manifold learning from structured kernels and out of sample extensions
title_full Manifold learning from structured kernels and out of sample extensions
title_fullStr Manifold learning from structured kernels and out of sample extensions Manifold learning from structured kernels and out of sample extensions
title_full_unstemmed Manifold learning from structured kernels and out of sample extensions Manifold learning from structured kernels and out of sample extensions
title_short Manifold learning from structured kernels and out of sample extensions
title_sort manifold learning from structured kernels and out of sample extensions
title_txtP Manifold learning from structured kernels and out of sample extensions
topic data big data analyysimenetelmät algoritmit koneoppiminen data analysis manifold learning diffusion maps
topic_facet algoritmit analyysimenetelmät big data data data analysis diffusion maps koneoppiminen manifold learning
url https://jyx.jyu.fi/handle/123456789/103733 http://www.urn.fi/URN:ISBN:978-952-86-0821-9
work_keys_str_mv AT salhovmoshe manifoldlearningfromstructuredkernelsandoutofsampleextensions