Personalized Summarization of Global News: Managing Bias with Large Language Models

As global information consumption accelerates, the demand for concise, relevant, and trustworthy news summaries has grown significantly. Large Language Models (LLMs) have demonstrated powerful capabilities in text summarization, yet current methods struggle to balance two critical goals: personalizi...

Täydet tiedot

Bibliografiset tiedot
Päätekijä: Zahan, Tasnim
Muut tekijät: Informaatioteknologian tiedekunta, Faculty of Information Technology, Jyväskylän yliopisto, University of Jyväskylä
Aineistotyyppi: Pro gradu
Kieli:eng
Julkaistu: 2025
Aiheet:
Linkit: https://jyx.jyu.fi/handle/123456789/102950
_version_ 1834222500893949952
author Zahan, Tasnim
author2 Informaatioteknologian tiedekunta Faculty of Information Technology Jyväskylän yliopisto University of Jyväskylä
author_facet Zahan, Tasnim Informaatioteknologian tiedekunta Faculty of Information Technology Jyväskylän yliopisto University of Jyväskylä Zahan, Tasnim Informaatioteknologian tiedekunta Faculty of Information Technology Jyväskylän yliopisto University of Jyväskylä
author_sort Zahan, Tasnim
datasource_str_mv jyx
description As global information consumption accelerates, the demand for concise, relevant, and trustworthy news summaries has grown significantly. Large Language Models (LLMs) have demonstrated powerful capabilities in text summarization, yet current methods struggle to balance two critical goals: personalizing content to reflect user preferences and ensuring neutrality by mitigating bias. This thesis proposes a novel framework for bias-aware, personalized summarization of global news using LLMs, aiming to generate user-aligned summaries without distorting factual accuracy or fairness. The study introduces a prompt-guided personalization strategy where user preferences, modeled as a set of attributes such as reading level, content structure, and abstractivity, are embedded into dynamically generated prompts. We evaluate three summarization paradigms: generic, attribute-guided, and prompt-based. Summaries are assessed using an LLM-as-a-judge approach across four dimensions: factual consistency, bias neutrality, personalization fit, and readability. Our evaluation combines GPT-4o and Gemini scoring with selective human validation to ensure robust measurement. Results reveal that prompt-based summarization, particularly with neutrally phrased prompts, achieves the highest alignment with user preferences while also improving or maintaining neutrality and factual integrity. Contrary to concerns that personalization may introduce bias, we observe positive correlations between personalization fit, factual accuracy, and fairness. Readability scores remain uniformly high across all approaches. This work contributes a scalable methodology for personalized summarization with bias control and demonstrates the potential of LLMs to deliver nuanced, context-aware summaries. By bridging personalization and neutrality, the framework sets a foundation for developing future AI systems that are both user-centric and ethically responsible.
first_indexed 2025-06-02T20:00:55Z
format Pro gradu
free_online_boolean 1
fullrecord [{"key": "dc.contributor.advisor", "value": "Terziyan, Vagan", "language": null, "element": "contributor", "qualifier": "advisor", "schema": "dc"}, {"key": "dc.contributor.author", "value": "Zahan, Tasnim", "language": null, "element": "contributor", "qualifier": "author", "schema": "dc"}, {"key": "dc.date.accessioned", "value": "2025-06-02T11:47:44Z", "language": null, "element": "date", "qualifier": "accessioned", "schema": "dc"}, {"key": "dc.date.available", "value": "2025-06-02T11:47:44Z", "language": null, "element": "date", "qualifier": "available", "schema": "dc"}, {"key": "dc.date.issued", "value": "2025", "language": null, "element": "date", "qualifier": "issued", "schema": "dc"}, {"key": "dc.identifier.uri", "value": "https://jyx.jyu.fi/handle/123456789/102950", "language": null, "element": "identifier", "qualifier": "uri", "schema": "dc"}, {"key": "dc.description.abstract", "value": "As global information consumption accelerates, the demand for concise, relevant, and trustworthy news summaries has grown significantly. Large Language Models (LLMs) have demonstrated powerful capabilities in text summarization, yet current methods struggle to balance two critical goals: personalizing content to reflect user preferences and ensuring neutrality by mitigating bias. This thesis proposes a novel framework for bias-aware, personalized summarization of global news using LLMs, aiming to generate user-aligned summaries without distorting factual accuracy or fairness. The study introduces a prompt-guided personalization strategy where user preferences, modeled as a set of attributes such as reading level, content structure, and abstractivity, are embedded into dynamically generated prompts. We evaluate three summarization paradigms: generic, attribute-guided, and prompt-based. Summaries are assessed using an LLM-as-a-judge approach across four dimensions: factual consistency, bias neutrality, personalization fit, and readability. Our evaluation combines GPT-4o and Gemini scoring with selective human validation to ensure robust measurement. Results reveal that prompt-based summarization, particularly with neutrally phrased prompts, achieves the highest alignment with user preferences while also improving or maintaining neutrality and factual integrity. Contrary to concerns that personalization may introduce bias, we observe positive correlations between personalization fit, factual accuracy, and fairness. Readability scores remain uniformly high across all approaches. This work contributes a scalable methodology for personalized summarization with bias control and demonstrates the potential of LLMs to deliver nuanced, context-aware summaries. By bridging personalization and neutrality, the framework sets a foundation for developing future AI systems that are both user-centric and ethically responsible.", "language": "en", "element": "description", "qualifier": "abstract", "schema": "dc"}, {"key": "dc.description.provenance", "value": "Submitted by jyx lomake-julkaisija (jyx-julkaisija.group@korppi.jyu.fi) on 2025-06-02T11:47:44Z\nNo. of bitstreams: 0", "language": "en", "element": "description", "qualifier": "provenance", "schema": "dc"}, {"key": "dc.description.provenance", "value": "Made available in DSpace on 2025-06-02T11:47:44Z (GMT). No. of bitstreams: 0", "language": "en", "element": "description", "qualifier": "provenance", "schema": "dc"}, {"key": "dc.format.extent", "value": "77", "language": null, "element": "format", "qualifier": "extent", "schema": "dc"}, {"key": "dc.format.mimetype", "value": "application/pdf", "language": null, "element": "format", "qualifier": "mimetype", "schema": "dc"}, {"key": "dc.language.iso", "value": "eng", "language": null, "element": "language", "qualifier": "iso", "schema": "dc"}, {"key": "dc.rights", "value": "In Copyright", "language": null, "element": "rights", "qualifier": null, "schema": "dc"}, {"key": "dc.title", "value": "Personalized Summarization of Global News: Managing Bias with Large Language Models", "language": null, "element": "title", "qualifier": null, "schema": "dc"}, {"key": "dc.type", "value": "master thesis", "language": null, "element": "type", "qualifier": null, "schema": "dc"}, {"key": "dc.identifier.urn", "value": "URN:NBN:fi:jyu-202506024759", "language": null, "element": "identifier", "qualifier": "urn", "schema": "dc"}, {"key": "dc.contributor.faculty", "value": "Informaatioteknologian tiedekunta", "language": "fi", "element": "contributor", "qualifier": "faculty", "schema": "dc"}, {"key": "dc.contributor.faculty", "value": "Faculty of Information Technology", "language": "en", "element": "contributor", "qualifier": "faculty", "schema": "dc"}, {"key": "dc.contributor.organization", "value": "Jyv\u00e4skyl\u00e4n yliopisto", "language": "fi", "element": "contributor", "qualifier": "organization", "schema": "dc"}, {"key": "dc.contributor.organization", "value": "University of Jyv\u00e4skyl\u00e4", "language": "en", "element": "contributor", "qualifier": "organization", "schema": "dc"}, {"key": "dc.subject.discipline", "value": "Master's Degree Programme in Artificial Intelligence", "language": "fi", "element": "subject", "qualifier": "discipline", "schema": "dc"}, {"key": "dc.subject.discipline", "value": "Master's Degree Programme in Artificial Intelligence", "language": "en", "element": "subject", "qualifier": "discipline", "schema": "dc"}, {"key": "dc.type.coar", "value": "http://purl.org/coar/resource_type/c_bdcc", "language": null, "element": "type", "qualifier": "coar", "schema": "dc"}, {"key": "dc.rights.copyright", "value": "\u00a9 The Author(s)", "language": null, "element": "rights", "qualifier": "copyright", "schema": "dc"}, {"key": "dc.rights.accesslevel", "value": "openAccess", "language": null, "element": "rights", "qualifier": "accesslevel", "schema": "dc"}, {"key": "dc.type.publication", "value": "masterThesis", "language": null, "element": "type", "qualifier": "publication", "schema": "dc"}, {"key": "dc.format.content", "value": "fulltext", "language": null, "element": "format", "qualifier": "content", "schema": "dc"}, {"key": "dc.rights.url", "value": "https://rightsstatements.org/page/InC/1.0/", "language": null, "element": "rights", "qualifier": "url", "schema": "dc"}, {"key": "dc.description.accessibilityfeature", "value": "ei tietoa saavutettavuudesta", "language": "fi", "element": "description", "qualifier": "accessibilityfeature", "schema": "dc"}, {"key": "dc.description.accessibilityfeature", "value": "unknown accessibility", "language": "en", "element": "description", "qualifier": "accessibilityfeature", "schema": "dc"}]
id jyx.123456789_102950
language eng
last_indexed 2025-06-02T20:01:48Z
main_date 2025-01-01T00:00:00Z
main_date_str 2025
online_boolean 1
online_urls_str_mv {"url":"https:\/\/jyx.jyu.fi\/bitstreams\/a305a78a-e657-49c7-8048-88326ec16b55\/download","text":"URN:NBN:fi:jyu-202506024759.pdf","source":"jyx","mediaType":"application\/pdf"}
publishDate 2025
record_format qdc
source_str_mv jyx
spellingShingle Zahan, Tasnim Personalized Summarization of Global News: Managing Bias with Large Language Models Master's Degree Programme in Artificial Intelligence
title Personalized Summarization of Global News: Managing Bias with Large Language Models
title_full Personalized Summarization of Global News: Managing Bias with Large Language Models
title_fullStr Personalized Summarization of Global News: Managing Bias with Large Language Models Personalized Summarization of Global News: Managing Bias with Large Language Models
title_full_unstemmed Personalized Summarization of Global News: Managing Bias with Large Language Models Personalized Summarization of Global News: Managing Bias with Large Language Models
title_short Personalized Summarization of Global News: Managing Bias with Large Language Models
title_sort personalized summarization of global news managing bias with large language models
title_txtP Personalized Summarization of Global News: Managing Bias with Large Language Models
topic Master's Degree Programme in Artificial Intelligence
topic_facet Master's Degree Programme in Artificial Intelligence
url https://jyx.jyu.fi/handle/123456789/102950 http://www.urn.fi/URN:NBN:fi:jyu-202506024759
work_keys_str_mv AT zahantasnim personalizedsummarizationofglobalnewsmanagingbiaswithlargelanguagemodels