How team managers experience data visualization during operational data-driven decision-making

The amount of data in companies has grown tremendously, to the extent that many businesses have more data than they can effectively manage. However, due to its sheer volume, fully leveraging this data for business development re mains challenging. For this reason, business intelligence (BI) system...

Täydet tiedot

Bibliografiset tiedot
Päätekijä: Kyöstilä, Lauri
Muut tekijät: Informaatioteknologian tiedekunta, Faculty of Information Technology, Jyväskylän yliopisto, University of Jyväskylä
Aineistotyyppi: Pro gradu
Kieli:eng
Julkaistu: 2025
Aiheet:
Linkit: https://jyx.jyu.fi/handle/123456789/102433
_version_ 1833407614527995904
author Kyöstilä, Lauri
author2 Informaatioteknologian tiedekunta Faculty of Information Technology Jyväskylän yliopisto University of Jyväskylä
author_facet Kyöstilä, Lauri Informaatioteknologian tiedekunta Faculty of Information Technology Jyväskylän yliopisto University of Jyväskylä Kyöstilä, Lauri Informaatioteknologian tiedekunta Faculty of Information Technology Jyväskylän yliopisto University of Jyväskylä
author_sort Kyöstilä, Lauri
datasource_str_mv jyx
description The amount of data in companies has grown tremendously, to the extent that many businesses have more data than they can effectively manage. However, due to its sheer volume, fully leveraging this data for business development re mains challenging. For this reason, business intelligence (BI) systems have been implemented to process large amounts of data and extract the most critical infor mation to support decision-making. In BI systems, information for decision-mak ing is presented to users as data visualizations, allowing them to search for and filter the information they need and process it into actionable knowledge. Based on this relevant and actionable knowledge, users can make data-driven decisions, a process known as data-driven decision-making. The challenge, however, lies in ensuring the accuracy and relevance of the data representation, verifying whether users understand the information presentation, and determining whether they can process it into meaningful insights and make rational, data driven decisions. This research aims to address this issue by investigating how team managers experience two different data visualization during operational data-driven decision-making situation. This phenomenon was researched by conducting eight individual during task performance, where each team manager was asked to share their answers to business related questions using two differ ently visualized Power BI reports, old and new. The new dashboard visualization was designed based on the research theoretical framework, using the exact same data as in the old dashboard. The research data was collected from during task performance using thinking aloud method. The data was analysed using the matic analysis. The research results provide understanding of different experi ences that stem from different data visualization during operational data-driven decision-making and highlight the importance of combining data visualization and decision-making theories and practises into a precise and well-structured data visualization design process. Additionally, the research result was a new design of old dashboard with theories and findings that can be utilized as design guidelines to creating more predictable data visualization experience during op erational decision-making. However, the research does not offer single explana tion or theory on how participants experience data visualization during opera tional data-driven decision-making due to the complexity of the research area. Datan määrä yrityksissä on kasvanut valtavasti mutta sen määrästä johtuen täysimittainen hyödyntäminen liiketoiminnan kehittämisessä on haastavaa. Tästä syystä liiketoimintatiedon hallinnanjärjestelmiä (BI) on otettu käyttöön, jotta valtavasta määrästä dataa voidaan prosessoida tärkein informaatio käyttäjän päätöksenteon tueksi. BI-järjestelmissä informaatio päätöksenteon tueksi esitetään käyttäjälle datan visualisointina, josta käyttäjän on mahdollista etsiä tarvitsemansa informaatio ja muuttaa se tiedoksi. Tämän relevantin tiedon pohjalta käyttäjän on mahdollista tehdä dataan perustuvia päätöksiä, jota kutsutaan dataohjautuvaksi päätöksenteoksi. Ongelma kuitenkin on, miten varmistetaan esitettävän informaation relevantti esitystapa eli ymmärtääkö käyttäjä esitetyn informaation ja pystyykö hän prosessoimaan sen relevantiksi tiedoksi sekä tekemään dataan perustuvia päätöksiä. Tämä tutkimus pyrkii vastaamaan tähän ongelmaan selvittämällä, kuinka tiiminvetäjä kokee kahden eri tavalla visualisoidun datan operationaalisessa dataohjautuvassa päätöksenteon tilanteessa. Datan visualisoinnin kokemusta päätöksenteon tilanteessa arvioitiin järjestämällä kahdeksan erillistä suoritustilannetta, joissa yksi tiiminvetäjä kerrallaan jakoi vastauksia liiketoiminnan kysymyksiin käyttäen kahta eri tavalla visualisoitua Power BI raporttia, vanhaa ja uutta. Uuden raportin visualisointi luotiin tutkimuksen teorioiden pohjalta käyttämällä täysin samaa dataa kuin vanhassa raportissa. Tutkimuksen data kerättiin suoritustilanteista käyttäen ääneen ajattelun metodia. Tutkimuksen data analysoitiin temaattisella analyysillä. Tutkimustulokset antavat ymmärryksen erilaisista kokemuksista, jotka johtuvat datan visualisoinnin eroavaisuudesta dataohjautuvan päätöksenteon tilanteessa ja korostavat datan visualisoinnin ja päätöksenteon teorioiden ja käytäntöjen yhdistämistä osaksi datan visualisoinnin suunnitteluprosessia. Tutkimustuloksena on uudelleen visualisoitu raportti, jonka suunnittelussa käytettyjä teorioita ja käytäntöjä voidaan käyttää ohjeistuksena datan visualisoinnin kokemuksen suunnittelussa. Tutkimus ei kuitenkaan tarjoa yhtä selkeää selitystä tai teoriaa siitä, miten tiiminvetäjät kokevat datavisualisoinnin operatiivisen dataohjatun päätöksenteon aikana, johtuen tutkimusalueen monimutkaisuudesta.
first_indexed 2025-05-19T20:00:44Z
format Pro gradu
free_online_boolean 1
fullrecord [{"key": "dc.contributor.advisor", "value": "Grahn, Hilkka", "language": null, "element": "contributor", "qualifier": "advisor", "schema": "dc"}, {"key": "dc.contributor.author", "value": "Ky\u00f6stil\u00e4, Lauri", "language": null, "element": "contributor", "qualifier": "author", "schema": "dc"}, {"key": "dc.date.accessioned", "value": "2025-05-19T09:26:56Z", "language": null, "element": "date", "qualifier": "accessioned", "schema": "dc"}, {"key": "dc.date.available", "value": "2025-05-19T09:26:56Z", "language": null, "element": "date", "qualifier": "available", "schema": "dc"}, {"key": "dc.date.issued", "value": "2025", "language": null, "element": "date", "qualifier": "issued", "schema": "dc"}, {"key": "dc.identifier.uri", "value": "https://jyx.jyu.fi/handle/123456789/102433", "language": null, "element": "identifier", "qualifier": "uri", "schema": "dc"}, {"key": "dc.description.abstract", "value": "The amount of data in companies has grown tremendously, to the extent that \nmany businesses have more data than they can effectively manage. However, \ndue to its sheer volume, fully leveraging this data for business development re\nmains challenging. For this reason, business intelligence (BI) systems have been \nimplemented to process large amounts of data and extract the most critical infor\nmation to support decision-making. In BI systems, information for decision-mak\ning is presented to users as data visualizations, allowing them to search for and \nfilter the information they need and process it into actionable knowledge. Based \non this relevant and actionable knowledge, users can make data-driven decisions, \na process known as data-driven decision-making. The challenge, however, lies in \nensuring the accuracy and relevance of the data representation, verifying \nwhether users understand the information presentation, and determining \nwhether they can process it into meaningful insights and make rational, data\ndriven decisions. This research aims to address this issue by investigating how \nteam managers experience two different data visualization during operational \ndata-driven decision-making situation. This phenomenon was researched by \nconducting eight individual during task performance, where each team manager \nwas asked to share their answers to business related questions using two differ\nently visualized Power BI reports, old and new. The new dashboard visualization \nwas designed based on the research theoretical framework, using the exact same \ndata as in the old dashboard. The research data was collected from during task \nperformance using thinking aloud method. The data was analysed using the\nmatic analysis. The research results provide understanding of different experi\nences that stem from different data visualization during operational data-driven \ndecision-making and highlight the importance of combining data visualization \nand decision-making theories and practises into a precise and well-structured \ndata visualization design process. Additionally, the research result was a new \ndesign of old dashboard with theories and findings that can be utilized as design \nguidelines to creating more predictable data visualization experience during op\nerational decision-making. However, the research does not offer single explana\ntion or theory on how participants experience data visualization during opera\ntional data-driven decision-making due to the complexity of the research area.", "language": "en", "element": "description", "qualifier": "abstract", "schema": "dc"}, {"key": "dc.description.abstract", "value": "Datan m\u00e4\u00e4r\u00e4 yrityksiss\u00e4 on kasvanut valtavasti mutta sen m\u00e4\u00e4r\u00e4st\u00e4 johtuen \nt\u00e4ysimittainen hy\u00f6dynt\u00e4minen liiketoiminnan kehitt\u00e4misess\u00e4 on haastavaa. \nT\u00e4st\u00e4 syyst\u00e4 liiketoimintatiedon hallinnanj\u00e4rjestelmi\u00e4 (BI) on otettu k\u00e4ytt\u00f6\u00f6n, \njotta valtavasta m\u00e4\u00e4r\u00e4st\u00e4 dataa voidaan prosessoida t\u00e4rkein informaatio \nk\u00e4ytt\u00e4j\u00e4n p\u00e4\u00e4t\u00f6ksenteon tueksi. BI-j\u00e4rjestelmiss\u00e4 informaatio p\u00e4\u00e4t\u00f6ksenteon \ntueksi esitet\u00e4\u00e4n k\u00e4ytt\u00e4j\u00e4lle datan visualisointina, josta k\u00e4ytt\u00e4j\u00e4n on mahdollista \netsi\u00e4 tarvitsemansa informaatio ja muuttaa se tiedoksi. T\u00e4m\u00e4n relevantin tiedon \npohjalta k\u00e4ytt\u00e4j\u00e4n on mahdollista tehd\u00e4 dataan perustuvia p\u00e4\u00e4t\u00f6ksi\u00e4, jota \nkutsutaan dataohjautuvaksi p\u00e4\u00e4t\u00f6ksenteoksi. Ongelma kuitenkin on, miten \nvarmistetaan esitett\u00e4v\u00e4n informaation relevantti esitystapa eli ymm\u00e4rt\u00e4\u00e4k\u00f6 \nk\u00e4ytt\u00e4j\u00e4 esitetyn informaation ja pystyyk\u00f6 h\u00e4n prosessoimaan sen relevantiksi \ntiedoksi sek\u00e4 tekem\u00e4\u00e4n dataan perustuvia p\u00e4\u00e4t\u00f6ksi\u00e4. T\u00e4m\u00e4 tutkimus pyrkii \nvastaamaan t\u00e4h\u00e4n ongelmaan selvitt\u00e4m\u00e4ll\u00e4, kuinka tiiminvet\u00e4j\u00e4 kokee kahden \neri tavalla visualisoidun datan operationaalisessa dataohjautuvassa \np\u00e4\u00e4t\u00f6ksenteon tilanteessa. Datan visualisoinnin kokemusta p\u00e4\u00e4t\u00f6ksenteon \ntilanteessa arvioitiin j\u00e4rjest\u00e4m\u00e4ll\u00e4 kahdeksan erillist\u00e4 suoritustilannetta, joissa \nyksi tiiminvet\u00e4j\u00e4 kerrallaan jakoi vastauksia liiketoiminnan kysymyksiin \nk\u00e4ytt\u00e4en kahta eri tavalla visualisoitua Power BI raporttia, vanhaa ja uutta. \nUuden raportin visualisointi luotiin tutkimuksen teorioiden pohjalta \nk\u00e4ytt\u00e4m\u00e4ll\u00e4 t\u00e4ysin samaa dataa kuin vanhassa raportissa. Tutkimuksen data \nker\u00e4ttiin suoritustilanteista k\u00e4ytt\u00e4en \u00e4\u00e4neen ajattelun metodia. Tutkimuksen \ndata analysoitiin temaattisella analyysill\u00e4. Tutkimustulokset antavat \nymm\u00e4rryksen erilaisista kokemuksista, jotka johtuvat datan visualisoinnin \neroavaisuudesta dataohjautuvan p\u00e4\u00e4t\u00f6ksenteon tilanteessa ja korostavat datan \nvisualisoinnin ja p\u00e4\u00e4t\u00f6ksenteon teorioiden ja k\u00e4yt\u00e4nt\u00f6jen yhdist\u00e4mist\u00e4 osaksi \ndatan visualisoinnin suunnitteluprosessia. Tutkimustuloksena on uudelleen \nvisualisoitu raportti, jonka suunnittelussa k\u00e4ytettyj\u00e4 teorioita ja k\u00e4yt\u00e4nt\u00f6j\u00e4 \nvoidaan k\u00e4ytt\u00e4\u00e4 ohjeistuksena datan visualisoinnin kokemuksen \nsuunnittelussa. Tutkimus ei kuitenkaan tarjoa yht\u00e4 selke\u00e4\u00e4 selityst\u00e4 tai teoriaa \nsiit\u00e4, miten tiiminvet\u00e4j\u00e4t kokevat datavisualisoinnin operatiivisen dataohjatun \np\u00e4\u00e4t\u00f6ksenteon aikana, johtuen tutkimusalueen monimutkaisuudesta.", "language": "fi", "element": "description", "qualifier": "abstract", "schema": "dc"}, {"key": "dc.description.provenance", "value": "Submitted by jyx lomake-julkaisija (jyx-julkaisija.group@korppi.jyu.fi) on 2025-05-19T09:26:56Z\nNo. of bitstreams: 0", "language": "en", "element": "description", "qualifier": "provenance", "schema": "dc"}, {"key": "dc.description.provenance", "value": "Made available in DSpace on 2025-05-19T09:26:56Z (GMT). No. of bitstreams: 0", "language": "en", "element": "description", "qualifier": "provenance", "schema": "dc"}, {"key": "dc.format.extent", "value": "90", "language": null, "element": "format", "qualifier": "extent", "schema": "dc"}, {"key": "dc.format.mimetype", "value": "application/pdf", "language": null, "element": "format", "qualifier": "mimetype", "schema": "dc"}, {"key": "dc.language.iso", "value": "eng", "language": null, "element": "language", "qualifier": "iso", "schema": "dc"}, {"key": "dc.rights", "value": "CC BY 4.0", "language": null, "element": "rights", "qualifier": null, "schema": "dc"}, {"key": "dc.title", "value": "How team managers experience data visualization during operational data-driven decision-making", "language": null, "element": "title", "qualifier": null, "schema": "dc"}, {"key": "dc.type", "value": "master thesis", "language": null, "element": "type", "qualifier": null, "schema": "dc"}, {"key": "dc.identifier.urn", "value": "URN:NBN:fi:jyu-202505194366", "language": null, "element": "identifier", "qualifier": "urn", "schema": "dc"}, {"key": "dc.contributor.faculty", "value": "Informaatioteknologian tiedekunta", "language": "fi", "element": "contributor", "qualifier": "faculty", "schema": "dc"}, {"key": "dc.contributor.faculty", "value": "Faculty of Information Technology", "language": "en", "element": "contributor", "qualifier": "faculty", "schema": "dc"}, {"key": "dc.contributor.organization", "value": "Jyv\u00e4skyl\u00e4n yliopisto", "language": "fi", "element": "contributor", "qualifier": "organization", "schema": "dc"}, {"key": "dc.contributor.organization", "value": "University of Jyv\u00e4skyl\u00e4", "language": "en", "element": "contributor", "qualifier": "organization", "schema": "dc"}, {"key": "dc.subject.discipline", "value": "Kognitiotieteen maisteriohjelma", "language": "fi", "element": "subject", "qualifier": "discipline", "schema": "dc"}, {"key": "dc.subject.discipline", "value": "Master\u2019s Degree Programme in Cognitive Science", "language": "en", "element": "subject", "qualifier": "discipline", "schema": "dc"}, {"key": "dc.type.coar", "value": "http://purl.org/coar/resource_type/c_bdcc", "language": null, "element": "type", "qualifier": "coar", "schema": "dc"}, {"key": "dc.rights.copyright", "value": "\u00a9 The Author(s)", "language": null, "element": "rights", "qualifier": "copyright", "schema": "dc"}, {"key": "dc.rights.accesslevel", "value": "openAccess", "language": null, "element": "rights", "qualifier": "accesslevel", "schema": "dc"}, {"key": "dc.type.publication", "value": "masterThesis", "language": null, "element": "type", "qualifier": "publication", "schema": "dc"}, {"key": "dc.format.content", "value": "fulltext", "language": null, "element": "format", "qualifier": "content", "schema": "dc"}, {"key": "dc.rights.url", "value": "https://creativecommons.org/licenses/by/4.0/", "language": null, "element": "rights", "qualifier": "url", "schema": "dc"}, {"key": "dc.description.accessibilityfeature", "value": "unknown accessibility", "language": "en", "element": "description", "qualifier": "accessibilityfeature", "schema": "dc"}, {"key": "dc.description.accessibilityfeature", "value": "ei tietoa saavutettavuudesta", "language": "fi", "element": "description", "qualifier": "accessibilityfeature", "schema": "dc"}]
id jyx.123456789_102433
language eng
last_indexed 2025-05-21T20:05:42Z
main_date 2025-01-01T00:00:00Z
main_date_str 2025
online_boolean 1
online_urls_str_mv {"url":"https:\/\/jyx.jyu.fi\/bitstreams\/75ffda14-d427-4959-86db-02abe9838a6d\/download","text":"URN:NBN:fi:jyu-202505194366.pdf","source":"jyx","mediaType":"application\/pdf"}
publishDate 2025
record_format qdc
source_str_mv jyx
spellingShingle Kyöstilä, Lauri How team managers experience data visualization during operational data-driven decision-making Kognitiotieteen maisteriohjelma Master’s Degree Programme in Cognitive Science
title How team managers experience data visualization during operational data-driven decision-making
title_full How team managers experience data visualization during operational data-driven decision-making
title_fullStr How team managers experience data visualization during operational data-driven decision-making How team managers experience data visualization during operational data-driven decision-making
title_full_unstemmed How team managers experience data visualization during operational data-driven decision-making How team managers experience data visualization during operational data-driven decision-making
title_short How team managers experience data visualization during operational data-driven decision-making
title_sort how team managers experience data visualization during operational data driven decision making
title_txtP How team managers experience data visualization during operational data-driven decision-making
topic Kognitiotieteen maisteriohjelma Master’s Degree Programme in Cognitive Science
topic_facet Kognitiotieteen maisteriohjelma Master’s Degree Programme in Cognitive Science
url https://jyx.jyu.fi/handle/123456789/102433 http://www.urn.fi/URN:NBN:fi:jyu-202505194366
work_keys_str_mv AT kyöstilälauri howteammanagersexperiencedatavisualizationduringoperationaldatadrivendecisionmakin