Fluorine-free metal-organic framework composites as ion-exchange membranes in vanadium flow batteries

Tämän pro gradun tutkielman kirjallinen osuus keskittyy ioninvaihtokalvoihin (engl. ion exchange membrane (IEM)). Erityisesti keskitytään kalvoihin, joihin on liitetty metalliorgaanisia verkkorakenteita (engl. metal-organic framework, (MOF)) ja joita on käytetty vanadiini-redox-virtausakuissa (engl...

Täydet tiedot

Bibliografiset tiedot
Päätekijä: Luimula, Tuuli
Muut tekijät: Matemaattis-luonnontieteellinen tiedekunta, Faculty of Sciences, Kemian laitos, Department of Chemistry, Jyväskylän yliopisto, University of Jyväskylä
Aineistotyyppi: Pro gradu
Kieli:eng
Julkaistu: 2025
Aiheet:
Linkit: https://jyx.jyu.fi/handle/123456789/101157
_version_ 1833407613919821824
author Luimula, Tuuli
author2 Matemaattis-luonnontieteellinen tiedekunta Faculty of Sciences Kemian laitos Department of Chemistry Jyväskylän yliopisto University of Jyväskylä
author_facet Luimula, Tuuli Matemaattis-luonnontieteellinen tiedekunta Faculty of Sciences Kemian laitos Department of Chemistry Jyväskylän yliopisto University of Jyväskylä Luimula, Tuuli Matemaattis-luonnontieteellinen tiedekunta Faculty of Sciences Kemian laitos Department of Chemistry Jyväskylän yliopisto University of Jyväskylä
author_sort Luimula, Tuuli
datasource_str_mv jyx
description Tämän pro gradun tutkielman kirjallinen osuus keskittyy ioninvaihtokalvoihin (engl. ion exchange membrane (IEM)). Erityisesti keskitytään kalvoihin, joihin on liitetty metalliorgaanisia verkkorakenteita (engl. metal-organic framework, (MOF)) ja joita on käytetty vanadiini-redox-virtausakuissa (engl. vanadium redox flow batteries (VRFB). Kokeellisessa osassa valmistettiin UiO-66 johdannaisia MOF:a ja kitosaani/UiO-66-NH2 + UiO-66-SO3H kalvoja sekä tutustuttiin vanadiinielektrolyytin valmistamiseen, jossa vanadiini on V3.5+ -hapetusasteella. Kirjallisen osuuden alussa käydään läpi eri redox-virtausakkuja ja niiden toimintaperiaatteita keskittyen VRFB:n. Ioninvaihtokalvojen osalta käydään anioninvaihtokalvon, kationinvaihtokalvon ja amfoteerisenvaihtokalvon ominaisuuksia ja toimintaperiaatteita läpi esimerkkien kera. MOF-yhdisteet käydään yleisesti läpi sisältäen niiden rakenne, synteesimenetelmät sekä skaalattavuus. Kirjallisuusosuuden loppupuolella tutustutaan miten MOF-yhdisteet toimivat ioninvaihtokalvoissa ja käydään läpi kirjallisuudesta löytyviä tutkimuksia liittyen MOF-komposiittikalvoihin. Koska MOF:t yksinään eivät muodosta kalvoa tutustutaan eri kalvomateriaaleihin, joita voidaan käyttää MOF-komposiittikalvon ”tukirankana”. Erityisesti keskitytään fluorittomiin kalvonmuodostajiin. Lopuksi kalvomateriaalina esitellään kitosaani, joka on yleinen biopolymeeri. Lisäksi tarkastellaan erilaisia kirjallisuudessa raportoituja kitosaani/MOF-komposiittikalvoja. Kokeellisessa osassa valmistettiin yhteensä 27 synteesituotetta: yksi erä UiO-66-yhdistettä, 10 erää UiO-66-NH2-yhdistettä ja 16 valmistuserää UiO-66-SO3H yhdistettä. Tavoitteena oli optimoida ja skaalata UiO-66-NH2 ja UiO-66-SO3H yhdisteiden synteesejä. Tuotteet karakterisoitiin jauheröntgendiffraktion sekä infrapunaspektroskopian avulla ja niiden lämpöstabiilisuutta tutkittiin termogravimetrisen analyysin avulla. Lisäksi valmistettiin kolme kalvoa, joista yksi oli puhdas kitosaanikalvo ja kaksi kalvoista oli kitosaani-UiO-66-NH2(15 p. %)/UiO-66-SO3H(6 p.-%) kalvoja. Kalvot karakterisoitiin jauhediffraktiolla. Vanadiini elektrolyytti analysoitiin ultravioletti-näkyvä (UV-VIS) spektroskopialla. UiO-66-NH2-yhdisteen synteesimenetelmä skaalautui onnistuneesti grammaskaalalle, mutta UiO-66-SO3H-yhdisteen skaalaus ei onnistunut, koska suuremmilla lähtöainemäärillä synteesituotteet eivät olleet kiteisiä, vaikka synteesit pienemmässä mittakaavassa toimivat hyvin. Kalvojen synteesit eivät tuottaneet riittävän laadukkaita kalvoja, joita olisi voitu testata vanadiini virtausakun yksittäiskennojärjestelmässä. Kokeelliseen työhön varatun ajan puitteissa aikaa uusien kalvojen valmistamiseen ei ollut, joten kalvon testaus akun kanssa rajattiin pois työn sisällöstä. The literature review of this master’s thesis focuses on ion exchange membranes (IEM). Specifically, it examines membranes containing metal-organic frameworks (MOFs) that have been utilized in vanadium redox flow batteries (VRFBs). The experimental section involves the synthesis of UiO-66 derivatives of MOFs and chitosan/UiO-66-NH2 + UiO-66-SO3H membranes, as well as the preparation of vanadium electrolyte in the V3.5+ oxidation state. At the beginning of the written section, various types of redox flow batteries and their operating principles are reviewed, with a focus on VRFBs. The properties and operating mechanisms of anion exchange membranes, cation exchange membranes, and amphoteric exchange membranes are discussed, along with relevant examples. The overview of MOF compounds covers their structures, synthesis methods, and scalability. Toward the end of the literature review, the role of MOF compounds in ion exchange membranes is explored, including a discussion of studies on MOF-composite membranes found in the literature. Since MOFs alone cannot form membranes, the study examines various membrane materials that can be backbone membranes for MOF-composite membranes, with a particular interest in fluorine-free alternatives. Finally, chitosan as a biopolymer membrane material and chitosan-MOF-composite membranes from literature are introduced. In the experimental section, a total of 27 products were synthesized: one UiO-66 compound, 10 UiO-66-NH2 compounds, and 16 UiO-66-SO3H compounds. The goal was to optimize and scale up the synthesis of UiO-66-NH2 and UiO-66-SO3H compounds. The products were characterized by using powder diffraction and infrared spectroscopy, and their thermal stability was examined through thermogravimetric analysis. Electrolyte was analyzed via ultraviolet visible (UV-VIS) spectroscopy. Additionally, three membranes were fabricated: one pure chitosan membrane and two chitosan-UiO-66-NH2 (15 wt.-%) + UiO-66-SO3H (6 wt.-%) membranes. The membranes were characterized using powder X-ray diffraction (PXRD). The synthesis of UiO-66-NH2 was successfully scaled to the gram scale, but the scaling of UiO-66-SO3H was unsuccessful due to the lack of crystallinity despite smaller-scale syntheses resulted in crystalline phase. The membrane preparation did not produce viable membranes that could be tested in a vanadium redox flow battery single cell system. Due to time constraints in the experimental work, it was not possible to prepare new membranes, and VRFB single cell testing of the membranes was not conducted.
first_indexed 2025-04-01T20:00:39Z
format Pro gradu
free_online_boolean 1
fullrecord [{"key": "dc.contributor.advisor", "value": "Lahtinen, Manu", "language": null, "element": "contributor", "qualifier": "advisor", "schema": "dc"}, {"key": "dc.contributor.author", "value": "Luimula, Tuuli", "language": null, "element": "contributor", "qualifier": "author", "schema": "dc"}, {"key": "dc.date.accessioned", "value": "2025-04-01T06:46:55Z", "language": null, "element": "date", "qualifier": "accessioned", "schema": "dc"}, {"key": "dc.date.available", "value": "2025-04-01T06:46:55Z", "language": null, "element": "date", "qualifier": "available", "schema": "dc"}, {"key": "dc.date.issued", "value": "2025", "language": null, "element": "date", "qualifier": "issued", "schema": "dc"}, {"key": "dc.identifier.uri", "value": "https://jyx.jyu.fi/handle/123456789/101157", "language": null, "element": "identifier", "qualifier": "uri", "schema": "dc"}, {"key": "dc.description.abstract", "value": "T\u00e4m\u00e4n pro gradun tutkielman kirjallinen osuus keskittyy ioninvaihtokalvoihin (engl. ion exchange membrane (IEM)). Erityisesti keskityt\u00e4\u00e4n kalvoihin, joihin on liitetty metalliorgaanisia verkkorakenteita (engl. metal-organic framework, (MOF)) ja joita on k\u00e4ytetty vanadiini-redox-virtausakuissa (engl. vanadium redox flow batteries (VRFB). Kokeellisessa osassa valmistettiin UiO-66 johdannaisia MOF:a ja kitosaani/UiO-66-NH2 + UiO-66-SO3H kalvoja sek\u00e4 tutustuttiin vanadiinielektrolyytin valmistamiseen, jossa vanadiini on V3.5+ -hapetusasteella.\n\nKirjallisen osuuden alussa k\u00e4yd\u00e4\u00e4n l\u00e4pi eri redox-virtausakkuja ja niiden toimintaperiaatteita keskittyen VRFB:n. Ioninvaihtokalvojen osalta k\u00e4yd\u00e4\u00e4n anioninvaihtokalvon, kationinvaihtokalvon ja amfoteerisenvaihtokalvon ominaisuuksia ja toimintaperiaatteita l\u00e4pi esimerkkien kera. MOF-yhdisteet k\u00e4yd\u00e4\u00e4n yleisesti l\u00e4pi sis\u00e4lt\u00e4en niiden rakenne, synteesimenetelm\u00e4t sek\u00e4 skaalattavuus. Kirjallisuusosuuden loppupuolella tutustutaan miten MOF-yhdisteet toimivat ioninvaihtokalvoissa ja k\u00e4yd\u00e4\u00e4n l\u00e4pi kirjallisuudesta l\u00f6ytyvi\u00e4 tutkimuksia liittyen MOF-komposiittikalvoihin. Koska MOF:t yksin\u00e4\u00e4n eiv\u00e4t muodosta kalvoa tutustutaan eri kalvomateriaaleihin, joita voidaan k\u00e4ytt\u00e4\u00e4 MOF-komposiittikalvon \u201dtukirankana\u201d. Erityisesti keskityt\u00e4\u00e4n fluorittomiin kalvonmuodostajiin. Lopuksi kalvomateriaalina esitell\u00e4\u00e4n kitosaani, joka on yleinen biopolymeeri. Lis\u00e4ksi tarkastellaan erilaisia kirjallisuudessa raportoituja kitosaani/MOF-komposiittikalvoja.\n\nKokeellisessa osassa valmistettiin yhteens\u00e4 27 synteesituotetta: yksi er\u00e4 UiO-66-yhdistett\u00e4, 10 er\u00e4\u00e4 UiO-66-NH2-yhdistett\u00e4 ja 16 valmistuser\u00e4\u00e4 UiO-66-SO3H yhdistett\u00e4. Tavoitteena oli optimoida ja skaalata UiO-66-NH2 ja UiO-66-SO3H yhdisteiden synteesej\u00e4. Tuotteet karakterisoitiin jauher\u00f6ntgendiffraktion sek\u00e4 infrapunaspektroskopian avulla ja niiden l\u00e4mp\u00f6stabiilisuutta tutkittiin termogravimetrisen analyysin avulla. Lis\u00e4ksi valmistettiin kolme kalvoa, joista yksi oli puhdas kitosaanikalvo ja kaksi kalvoista oli kitosaani-UiO-66-NH2(15 p. %)/UiO-66-SO3H(6 p.-%) kalvoja. Kalvot karakterisoitiin jauhediffraktiolla. Vanadiini elektrolyytti analysoitiin ultravioletti-n\u00e4kyv\u00e4 (UV-VIS) spektroskopialla. UiO-66-NH2-yhdisteen synteesimenetelm\u00e4 skaalautui onnistuneesti grammaskaalalle, mutta UiO-66-SO3H-yhdisteen skaalaus ei onnistunut, koska suuremmilla l\u00e4ht\u00f6ainem\u00e4\u00e4rill\u00e4 synteesituotteet eiv\u00e4t olleet kiteisi\u00e4, vaikka synteesit pienemm\u00e4ss\u00e4 mittakaavassa toimivat hyvin. Kalvojen synteesit eiv\u00e4t tuottaneet riitt\u00e4v\u00e4n laadukkaita kalvoja, joita olisi voitu testata vanadiini virtausakun yksitt\u00e4iskennoj\u00e4rjestelm\u00e4ss\u00e4. Kokeelliseen ty\u00f6h\u00f6n varatun ajan puitteissa aikaa uusien kalvojen valmistamiseen ei ollut, joten kalvon testaus akun kanssa rajattiin pois ty\u00f6n sis\u00e4ll\u00f6st\u00e4.", "language": "fi", "element": "description", "qualifier": "abstract", "schema": "dc"}, {"key": "dc.description.abstract", "value": "The literature review of this master\u2019s thesis focuses on ion exchange membranes (IEM). Specifically, it examines membranes containing metal-organic frameworks (MOFs) that have been utilized in vanadium redox flow batteries (VRFBs). The experimental section involves the synthesis of UiO-66 derivatives of MOFs and chitosan/UiO-66-NH2 + UiO-66-SO3H membranes, as well as the preparation of vanadium electrolyte in the V3.5+ oxidation state.\n\nAt the beginning of the written section, various types of redox flow batteries and their operating principles are reviewed, with a focus on VRFBs. The properties and operating mechanisms of anion exchange membranes, cation exchange membranes, and amphoteric exchange membranes are discussed, along with relevant examples. The overview of MOF compounds covers their structures, synthesis methods, and scalability. Toward the end of the literature review, the role of MOF compounds in ion exchange membranes is explored, including a discussion of studies on MOF-composite membranes found in the literature. Since MOFs alone cannot form membranes, the study examines various membrane materials that can be backbone membranes for MOF-composite membranes, with a particular interest in fluorine-free alternatives. Finally, chitosan as a biopolymer membrane material and chitosan-MOF-composite membranes from literature are introduced.\n\nIn the experimental section, a total of 27 products were synthesized: one UiO-66 compound, 10 UiO-66-NH2 compounds, and 16 UiO-66-SO3H compounds. The goal was to optimize and scale up the synthesis of UiO-66-NH2 and UiO-66-SO3H compounds. The products were characterized by using powder diffraction and infrared spectroscopy, and their thermal stability was examined through thermogravimetric analysis. Electrolyte was analyzed via ultraviolet visible (UV-VIS) spectroscopy. Additionally, three membranes were fabricated: one pure chitosan membrane and two chitosan-UiO-66-NH2 (15 wt.-%) + UiO-66-SO3H (6 wt.-%) membranes. The membranes were characterized using powder X-ray diffraction (PXRD). The synthesis of UiO-66-NH2 was successfully scaled to the gram scale, but the scaling of UiO-66-SO3H was unsuccessful due to the lack of crystallinity despite smaller-scale syntheses resulted in crystalline phase. The membrane preparation did not produce viable membranes that could be tested in a vanadium redox flow battery single cell system. Due to time constraints in the experimental work, it was not possible to prepare new membranes, and VRFB single cell testing of the membranes was not conducted.", "language": "en", "element": "description", "qualifier": "abstract", "schema": "dc"}, {"key": "dc.description.provenance", "value": "Submitted by Paivi Vuorio (paelvuor@jyu.fi) on 2025-04-01T06:46:55Z\nNo. of bitstreams: 0", "language": "en", "element": "description", "qualifier": "provenance", "schema": "dc"}, {"key": "dc.description.provenance", "value": "Made available in DSpace on 2025-04-01T06:46:55Z (GMT). No. of bitstreams: 0\n Previous issue date: 2025", "language": "en", "element": "description", "qualifier": "provenance", "schema": "dc"}, {"key": "dc.format.extent", "value": "149", "language": null, "element": "format", "qualifier": "extent", "schema": "dc"}, {"key": "dc.language.iso", "value": "eng", "language": null, "element": "language", "qualifier": "iso", "schema": "dc"}, {"key": "dc.rights", "value": "In Copyright", "language": null, "element": "rights", "qualifier": null, "schema": "dc"}, {"key": "dc.subject.other", "value": "metal-organic framework", "language": null, "element": "subject", "qualifier": "other", "schema": "dc"}, {"key": "dc.subject.other", "value": "MOF", "language": null, "element": "subject", "qualifier": "other", "schema": "dc"}, {"key": "dc.subject.other", "value": "Ion-exchange membrane", "language": null, "element": "subject", "qualifier": "other", "schema": "dc"}, {"key": "dc.subject.other", "value": "vanadium redox flow battery", "language": null, "element": "subject", "qualifier": "other", "schema": "dc"}, {"key": "dc.subject.other", "value": "chitosan", "language": null, "element": "subject", "qualifier": "other", "schema": "dc"}, {"key": "dc.subject.other", "value": "UiO-66-NH2", "language": null, "element": "subject", "qualifier": "other", "schema": "dc"}, {"key": "dc.subject.other", "value": "UiO-66-SO3H", "language": null, "element": "subject", "qualifier": "other", "schema": "dc"}, {"key": "dc.subject.other", "value": "ioninvaihtokalvo", "language": null, "element": "subject", "qualifier": "other", "schema": "dc"}, {"key": "dc.subject.other", "value": "vanadiini-redox-virtausakku", "language": null, "element": "subject", "qualifier": "other", "schema": "dc"}, {"key": "dc.subject.other", "value": "", "language": null, "element": "subject", "qualifier": "other", "schema": "dc"}, {"key": "dc.title", "value": "Fluorine-free metal-organic framework composites as ion-exchange membranes in vanadium flow batteries", "language": null, "element": "title", "qualifier": null, "schema": "dc"}, {"key": "dc.type", "value": "master thesis", "language": null, "element": "type", "qualifier": null, "schema": "dc"}, {"key": "dc.identifier.urn", "value": "URN:NBN:fi:jyu-202504012984", "language": null, "element": "identifier", "qualifier": "urn", "schema": "dc"}, {"key": "dc.contributor.faculty", "value": "Matemaattis-luonnontieteellinen tiedekunta", "language": "fi", "element": "contributor", "qualifier": "faculty", "schema": "dc"}, {"key": "dc.contributor.faculty", "value": "Faculty of Sciences", "language": "en", "element": "contributor", "qualifier": "faculty", "schema": "dc"}, {"key": "dc.contributor.department", "value": "Kemian laitos", "language": "fi", "element": "contributor", "qualifier": "department", "schema": "dc"}, {"key": "dc.contributor.department", "value": "Department of Chemistry", "language": "en", "element": "contributor", "qualifier": "department", "schema": "dc"}, {"key": "dc.contributor.organization", "value": "Jyv\u00e4skyl\u00e4n yliopisto", "language": null, "element": "contributor", "qualifier": "organization", "schema": "dc"}, {"key": "dc.contributor.organization", "value": "University of Jyv\u00e4skyl\u00e4", "language": null, "element": "contributor", "qualifier": "organization", "schema": "dc"}, {"key": "dc.subject.discipline", "value": "Nanotiede", "language": "fi", "element": "subject", "qualifier": "discipline", "schema": "dc"}, {"key": "dc.subject.discipline", "value": "Nanoscience", "language": "en", "element": "subject", "qualifier": "discipline", "schema": "dc"}, {"key": "dc.type.coar", "value": "http://purl.org/coar/resource_type/c_bdcc", "language": null, "element": "type", "qualifier": "coar", "schema": "dc"}, {"key": "dc.rights.copyright", "value": "\u00a9 The Author(s)", "language": "fi", "element": "rights", "qualifier": "copyright", "schema": "dc"}, {"key": "dc.rights.accesslevel", "value": "openAccess", "language": null, "element": "rights", "qualifier": "accesslevel", "schema": "dc"}, {"key": "dc.type.publication", "value": "masterThesis", "language": null, "element": "type", "qualifier": "publication", "schema": "dc"}, {"key": "dc.subject.yso", "value": "uusiutuvat energial\u00e4hteet", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.rights.url", "value": "https://rightsstatements.org/page/InC/1.0/", "language": null, "element": "rights", "qualifier": "url", "schema": "dc"}, {"key": "dc.description.accessibilityfeature", "value": "unknown accessibility", "language": "en", "element": "description", "qualifier": "accessibilityfeature", "schema": "dc"}, {"key": "dc.description.accessibilityfeature", "value": "ei tietoa saavutettavuudesta", "language": "fi", "element": "description", "qualifier": "accessibilityfeature", "schema": "dc"}]
id jyx.123456789_101157
language eng
last_indexed 2025-05-21T20:06:20Z
main_date 2025-01-01T00:00:00Z
main_date_str 2025
online_boolean 1
online_urls_str_mv {"url":"https:\/\/jyx.jyu.fi\/bitstreams\/c0c039d7-e573-4011-82f4-a473cb994539\/download","text":"URN:NBN:fi:jyu-202504012984.pdf","source":"jyx","mediaType":"application\/pdf"}
publishDate 2025
record_format qdc
source_str_mv jyx
spellingShingle Luimula, Tuuli Fluorine-free metal-organic framework composites as ion-exchange membranes in vanadium flow batteries metal-organic framework MOF Ion-exchange membrane vanadium redox flow battery chitosan UiO-66-NH2 UiO-66-SO3H ioninvaihtokalvo vanadiini-redox-virtausakku Nanotiede Nanoscience uusiutuvat energialähteet
title Fluorine-free metal-organic framework composites as ion-exchange membranes in vanadium flow batteries
title_full Fluorine-free metal-organic framework composites as ion-exchange membranes in vanadium flow batteries
title_fullStr Fluorine-free metal-organic framework composites as ion-exchange membranes in vanadium flow batteries Fluorine-free metal-organic framework composites as ion-exchange membranes in vanadium flow batteries
title_full_unstemmed Fluorine-free metal-organic framework composites as ion-exchange membranes in vanadium flow batteries Fluorine-free metal-organic framework composites as ion-exchange membranes in vanadium flow batteries
title_short Fluorine-free metal-organic framework composites as ion-exchange membranes in vanadium flow batteries
title_sort fluorine free metal organic framework composites as ion exchange membranes in vanadium flow batteries
title_txtP Fluorine-free metal-organic framework composites as ion-exchange membranes in vanadium flow batteries
topic metal-organic framework MOF Ion-exchange membrane vanadium redox flow battery chitosan UiO-66-NH2 UiO-66-SO3H ioninvaihtokalvo vanadiini-redox-virtausakku Nanotiede Nanoscience uusiutuvat energialähteet
topic_facet Ion-exchange membrane MOF Nanoscience Nanotiede UiO-66-NH2 UiO-66-SO3H chitosan ioninvaihtokalvo metal-organic framework uusiutuvat energialähteet vanadiini-redox-virtausakku vanadium redox flow battery
url https://jyx.jyu.fi/handle/123456789/101157 http://www.urn.fi/URN:NBN:fi:jyu-202504012984
work_keys_str_mv AT luimulatuuli fluorinefreemetalorganicframeworkcompositesasionexchangemembranesinvanadiumflowbatt