How does perception efficiency influence optimal foraging?

Ravinnon etsiminen on tärkeä osa eläimen elinkiertoa, johon liittyy päätöksentekoa ja kompromisseja: ravinnonetsijän täytyy tasapainottaa ravinnon hankintaan kulunut energia suhteessa ruuan syömisestä saatavaan energiaan. Tämä tutkielma laajentaa Cornellin ym. (2019) luomaa matemaattista viitekehyst...

Täydet tiedot

Bibliografiset tiedot
Päätekijä: Köykkä, Jenni
Muut tekijät: Matemaattis-luonnontieteellinen tiedekunta, Faculty of Sciences, Bio- ja ympäristötieteiden laitos, Department of Biological and Environmental Science, Jyväskylän yliopisto, University of Jyväskylä
Aineistotyyppi: Pro gradu
Kieli:eng
Julkaistu: 2025
Aiheet:
Linkit: https://jyx.jyu.fi/handle/123456789/101091
_version_ 1828193028013031424
author Köykkä, Jenni
author2 Matemaattis-luonnontieteellinen tiedekunta Faculty of Sciences Bio- ja ympäristötieteiden laitos Department of Biological and Environmental Science Jyväskylän yliopisto University of Jyväskylä
author_facet Köykkä, Jenni Matemaattis-luonnontieteellinen tiedekunta Faculty of Sciences Bio- ja ympäristötieteiden laitos Department of Biological and Environmental Science Jyväskylän yliopisto University of Jyväskylä Köykkä, Jenni Matemaattis-luonnontieteellinen tiedekunta Faculty of Sciences Bio- ja ympäristötieteiden laitos Department of Biological and Environmental Science Jyväskylän yliopisto University of Jyväskylä
author_sort Köykkä, Jenni
datasource_str_mv jyx
description Ravinnon etsiminen on tärkeä osa eläimen elinkiertoa, johon liittyy päätöksentekoa ja kompromisseja: ravinnonetsijän täytyy tasapainottaa ravinnon hankintaan kulunut energia suhteessa ruuan syömisestä saatavaan energiaan. Tämä tutkielma laajentaa Cornellin ym. (2019) luomaa matemaattista viitekehystä optimaalisen ravinnonhankintakäyttäytymisen tutkimisessa hyödyntäen yksilöpohjaisia malleja (IBMs), ja erityisesti spatio-temporaalisia pisteprosesseja. Fokus on erityisesti tilanteissa, joissa ravinnonetsijä etsii paikallaan olevia, ryppäissä esiintyviä kohteita, käyttäen etsinnässään kahta eri liikkumisnopeutta: hidasta ja nopeaa. Tavoitteena on ymmärtää, kuinka havaintotehokkuus vaikuttaa optimaaliseen vaihtonopeuteen hitaasta liikkeestä nopeaan. Perusmallissa ravinnonetsijä kohtaa satunnaisesti ryppäissä esiintyviä paikallaan olevia kohteita; kohdatessaan kohteen nopeasti liikkuessaan, se vaihtaa hitaaseen liikkeeseen kuluttaakseen kohteen. Mikäli etsijä on valmiiksi hitaassa liikkeessä, se pysyy siinä kuluttaen kohteen. Tässä tutkimuksessa tilanteeseen tuodaan mukaan uusi piirre, havaintotehokkuus. Ravinnonetsijän havaintotehokkuus vaikuttaa sen kykyyn havaita kohteita nopeassa tilassa, jolloin se vaikuttaa myös kulutustehokkuuteen. Hypoteesi on, että kun havaintotehokkuus heikkenee nopeassa liikkeessä, ravinnonetsijän kyky havaita kohteita vähenee, mikä puolestaan laskee kulutusnopeutta tässä tilassa. Tämä tekisi edullisemmaksi viettää enemmän aikaa hitaassa liikkeessä. Tulokseni osoittavat, että havaintotehokkuuden laskiessa ravinnonetsijän kannattaa viettää yhä enemmän aikaa hitaassa liikkeessä maksimoidakseen kulutuksen. Optimaalisena strategiana tällöin on pysyä täysin paikallaan, jos havaintotehokkuus nopeassa liikkeessä on merkittävästi alhaisempi kuin hitaassa liikkeessä. Tämä mallin laajennus tarjoaa realistisemman käsityksen ruuanhankintakäyttäytymisestä ottamalla huomioon havaintotehokkuuden ja liikkumisnopeuden väliset kompromissit. The foraging activities of an animal are a crucial part of its life cycle that involve decision-making and trade-offs: the forager needs to balance the energy expended in foraging with the energy gained from consuming food. Using individual-based models (IBMs), especially spatio-temporal point processes, this thesis builds on the mathematical framework created by Cornell et al. (2019) to study optimal foraging behavior in situations where a forager searches for stationary, clustered targets and has two movement modes: fast and slow. The goal is to understand how perception efficiency impacts the optimal switching rate from slow to fast mode. In the baseline model, a forager encounters stationary targets that appear randomly in clusters; upon encountering a target in fast mode, the forager switches to slow mode to consume it. If already in slow mode, it remains there while consuming the target. This study introduces a new trait that was not studied in the original model: perception efficiency. The perception efficiency of a forager influences its ability to detect targets while in the fast mode and thus also affects the consumption rate. The hypothesis is that when perception efficiency is reduced in fast mode, it decreases the forager’s ability to detect targets, thereby lowering the consumption rate in that mode. This in turn would make it advantageous for the forager to spend more time in slow mode. My findings suggest that as perception efficiency decreases, it becomes beneficial for the forager to spend more time in slow mode to maximize consumption, with the optimal strategy being to remain completely stationary when perception efficiency in fast mode is substantially lower than in slow mode. This model extension provides a more realistic description of foraging behavior by incorporating perception trade-offs related to movement speed.
first_indexed 2025-03-27T21:00:58Z
format Pro gradu
fullrecord [{"key": "dc.contributor.advisor", "value": "Ovaskainen, Otso", "language": null, "element": "contributor", "qualifier": "advisor", "schema": "dc"}, {"key": "dc.contributor.advisor", "value": "Lehtonen, Jussi", "language": null, "element": "contributor", "qualifier": "advisor", "schema": "dc"}, {"key": "dc.contributor.advisor", "value": "Moser, Niklas", "language": null, "element": "contributor", "qualifier": "advisor", "schema": "dc"}, {"key": "dc.contributor.advisor", "value": "Serra I Dom\u00ednquez, Lluis", "language": null, "element": "contributor", "qualifier": "advisor", "schema": "dc"}, {"key": "dc.contributor.author", "value": "K\u00f6ykk\u00e4, Jenni", "language": null, "element": "contributor", "qualifier": "author", "schema": "dc"}, {"key": "dc.date.accessioned", "value": "2025-03-27T07:37:48Z", "language": null, "element": "date", "qualifier": "accessioned", "schema": "dc"}, {"key": "dc.date.available", "value": "2025-03-27T07:37:48Z", "language": null, "element": "date", "qualifier": "available", "schema": "dc"}, {"key": "dc.date.issued", "value": "2025", "language": null, "element": "date", "qualifier": "issued", "schema": "dc"}, {"key": "dc.identifier.uri", "value": "https://jyx.jyu.fi/handle/123456789/101091", "language": null, "element": "identifier", "qualifier": "uri", "schema": "dc"}, {"key": "dc.description.abstract", "value": "Ravinnon etsiminen on t\u00e4rke\u00e4 osa el\u00e4imen elinkiertoa, johon liittyy p\u00e4\u00e4t\u00f6ksentekoa ja kompromisseja: ravinnonetsij\u00e4n t\u00e4ytyy tasapainottaa ravinnon hankintaan kulunut energia suhteessa ruuan sy\u00f6misest\u00e4 saatavaan energiaan. T\u00e4m\u00e4 tutkielma laajentaa Cornellin ym. (2019) luomaa matemaattista viitekehyst\u00e4 optimaalisen ravinnonhankintak\u00e4ytt\u00e4ytymisen tutkimisessa hy\u00f6dynt\u00e4en yksil\u00f6pohjaisia malleja (IBMs), ja erityisesti spatio-temporaalisia pisteprosesseja. Fokus on erityisesti tilanteissa, joissa ravinnonetsij\u00e4 etsii paikallaan olevia, rypp\u00e4iss\u00e4 esiintyvi\u00e4 kohteita, k\u00e4ytt\u00e4en etsinn\u00e4ss\u00e4\u00e4n kahta eri liikkumisnopeutta: hidasta ja nopeaa. Tavoitteena on ymm\u00e4rt\u00e4\u00e4, kuinka havaintotehokkuus vaikuttaa optimaaliseen vaihtonopeuteen hitaasta liikkeest\u00e4 nopeaan. Perusmallissa ravinnonetsij\u00e4 kohtaa satunnaisesti rypp\u00e4iss\u00e4 esiintyvi\u00e4 paikallaan olevia kohteita; kohdatessaan kohteen nopeasti liikkuessaan, se vaihtaa hitaaseen liikkeeseen kuluttaakseen kohteen. Mik\u00e4li etsij\u00e4 on valmiiksi hitaassa liikkeess\u00e4, se pysyy siin\u00e4 kuluttaen kohteen. T\u00e4ss\u00e4 tutkimuksessa tilanteeseen tuodaan mukaan uusi piirre, havaintotehokkuus. Ravinnonetsij\u00e4n havaintotehokkuus vaikuttaa sen kykyyn havaita kohteita nopeassa tilassa, jolloin se vaikuttaa my\u00f6s kulutustehokkuuteen. Hypoteesi on, ett\u00e4 kun havaintotehokkuus heikkenee nopeassa liikkeess\u00e4, ravinnonetsij\u00e4n kyky havaita kohteita v\u00e4henee, mik\u00e4 puolestaan laskee kulutusnopeutta t\u00e4ss\u00e4 tilassa. T\u00e4m\u00e4 tekisi edullisemmaksi viett\u00e4\u00e4 enemm\u00e4n aikaa hitaassa liikkeess\u00e4. Tulokseni osoittavat, ett\u00e4 havaintotehokkuuden laskiessa ravinnonetsij\u00e4n kannattaa viett\u00e4\u00e4 yh\u00e4 enemm\u00e4n aikaa hitaassa liikkeess\u00e4 maksimoidakseen kulutuksen. Optimaalisena strategiana t\u00e4ll\u00f6in on pysy\u00e4 t\u00e4ysin paikallaan, jos havaintotehokkuus nopeassa liikkeess\u00e4 on merkitt\u00e4v\u00e4sti alhaisempi kuin hitaassa liikkeess\u00e4. T\u00e4m\u00e4 mallin laajennus tarjoaa realistisemman k\u00e4sityksen ruuanhankintak\u00e4ytt\u00e4ytymisest\u00e4 ottamalla huomioon havaintotehokkuuden ja liikkumisnopeuden v\u00e4liset kompromissit.", "language": "fi", "element": "description", "qualifier": "abstract", "schema": "dc"}, {"key": "dc.description.abstract", "value": "The foraging activities of an animal are a crucial part of its life cycle that involve decision-making and trade-offs: the forager needs to balance the energy expended in foraging with the energy gained from consuming food. Using individual-based models (IBMs), especially spatio-temporal point processes, this thesis builds on the mathematical framework created by Cornell et al. (2019) to study optimal foraging behavior in situations where a forager searches for stationary, clustered targets and has two movement modes: fast and slow. The goal is to understand how perception efficiency impacts the optimal switching rate from slow to fast mode. In the baseline model, a forager encounters stationary targets that appear randomly in clusters; upon encountering a target in fast mode, the forager switches to slow mode to consume it. If already in slow mode, it remains there while consuming the target. This study introduces a new trait that was not studied in the original model: perception efficiency. The perception efficiency of a forager influences its ability to detect targets while in the fast mode and thus also affects the consumption rate. The hypothesis is that when perception efficiency is reduced in fast mode, it decreases the forager\u2019s ability to detect targets, thereby lowering the consumption rate in that mode. This in turn would make it advantageous for the forager to spend more time in slow mode. My findings suggest that as perception efficiency decreases, it becomes beneficial for the forager to spend more time in slow mode to maximize consumption, with the optimal strategy being to remain completely stationary when perception efficiency in fast mode is substantially lower than in slow mode. This model extension provides a more realistic description of foraging behavior by incorporating perception trade-offs related to movement speed.", "language": "en", "element": "description", "qualifier": "abstract", "schema": "dc"}, {"key": "dc.description.provenance", "value": "Submitted by Paivi Vuorio (paelvuor@jyu.fi) on 2025-03-27T07:37:48Z\nNo. of bitstreams: 0", "language": "en", "element": "description", "qualifier": "provenance", "schema": "dc"}, {"key": "dc.description.provenance", "value": "Made available in DSpace on 2025-03-27T07:37:48Z (GMT). No. of bitstreams: 0\n Previous issue date: 2025", "language": "en", "element": "description", "qualifier": "provenance", "schema": "dc"}, {"key": "dc.format.extent", "value": "64", "language": null, "element": "format", "qualifier": "extent", "schema": "dc"}, {"key": "dc.language.iso", "value": "eng", "language": null, "element": "language", "qualifier": "iso", "schema": "dc"}, {"key": "dc.rights", "value": "In Copyright", "language": null, "element": "rights", "qualifier": null, "schema": "dc"}, {"key": "dc.subject.other", "value": "individual-based modeling", "language": null, "element": "subject", "qualifier": "other", "schema": "dc"}, {"key": "dc.subject.other", "value": "IBMs", "language": null, "element": "subject", "qualifier": "other", "schema": "dc"}, {"key": "dc.subject.other", "value": "mathematical framework", "language": null, "element": "subject", "qualifier": "other", "schema": "dc"}, {"key": "dc.subject.other", "value": "optimal foraging theory", "language": null, "element": "subject", "qualifier": "other", "schema": "dc"}, {"key": "dc.subject.other", "value": "spatio-temporal point processes", "language": null, "element": "subject", "qualifier": "other", "schema": "dc"}, {"key": "dc.title", "value": "How does perception efficiency influence optimal foraging?", "language": null, "element": "title", "qualifier": null, "schema": "dc"}, {"key": "dc.type", "value": "master thesis", "language": null, "element": "type", "qualifier": null, "schema": "dc"}, {"key": "dc.identifier.urn", "value": "URN:NBN:fi:jyu-202503272907", "language": null, "element": "identifier", "qualifier": "urn", "schema": "dc"}, {"key": "dc.contributor.faculty", "value": "Matemaattis-luonnontieteellinen tiedekunta", "language": "fi", "element": "contributor", "qualifier": "faculty", "schema": "dc"}, {"key": "dc.contributor.faculty", "value": "Faculty of Sciences", "language": "en", "element": "contributor", "qualifier": "faculty", "schema": "dc"}, {"key": "dc.contributor.department", "value": "Bio- ja ymp\u00e4rist\u00f6tieteiden laitos", "language": "fi", "element": "contributor", "qualifier": "department", "schema": "dc"}, {"key": "dc.contributor.department", "value": "Department of Biological and Environmental Science", "language": "en", "element": "contributor", "qualifier": "department", "schema": "dc"}, {"key": "dc.contributor.organization", "value": "Jyv\u00e4skyl\u00e4n yliopisto", "language": null, "element": "contributor", "qualifier": "organization", "schema": "dc"}, {"key": "dc.contributor.organization", "value": "University of Jyv\u00e4skyl\u00e4", "language": null, "element": "contributor", "qualifier": "organization", "schema": "dc"}, {"key": "dc.subject.discipline", "value": "Ekologia ja evoluutiobiologia", "language": "fi", "element": "subject", "qualifier": "discipline", "schema": "dc"}, {"key": "dc.subject.discipline", "value": "Ecology and evolutionary biology", "language": "en", "element": "subject", "qualifier": "discipline", "schema": "dc"}, {"key": "dc.type.coar", "value": "http://purl.org/coar/resource_type/c_bdcc", "language": null, "element": "type", "qualifier": "coar", "schema": "dc"}, {"key": "dc.rights.copyright", "value": "\u00a9 The Author(s)", "language": "fi", "element": "rights", "qualifier": "copyright", "schema": "dc"}, {"key": "dc.rights.accesslevel", "value": "restrictedAccess", "language": null, "element": "rights", "qualifier": "accesslevel", "schema": "dc"}, {"key": "dc.type.publication", "value": "masterThesis", "language": null, "element": "type", "qualifier": "publication", "schema": "dc"}, {"key": "dc.subject.yso", "value": "matemaattiset mallit", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "simulointi", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.rights.url", "value": "https://rightsstatements.org/page/InC/1.0/", "language": null, "element": "rights", "qualifier": "url", "schema": "dc"}, {"key": "dc.rights.accessrights", "value": "Tekij\u00e4 ei ole antanut lupaa avoimeen julkaisuun, joten aineisto on luettavissa vain Jyv\u00e4skyl\u00e4n yliopiston kirjaston arkistoty\u00f6semalta. Ks. https://kirjasto.jyu.fi/fi/tyoskentelytilat/laitteet-ja-tilat#autotoc-item-autotoc-2", "language": "fi", "element": "rights", "qualifier": "accessrights", "schema": "dc"}, {"key": "dc.rights.accessrights", "value": "The author has not given permission to make the work publicly available electronically. Therefore the material can be read only at the archival workstation at Jyv\u00e4skyl\u00e4 University Library (https://kirjasto.jyu.fi/fi/tyoskentelytilat/laitteet-ja-tilat#autotoc-item-autotoc-2.", "language": "en", "element": "rights", "qualifier": "accessrights", "schema": "dc"}]
id jyx.123456789_101091
language eng
last_indexed 2025-03-27T21:00:58Z
main_date 2025-01-01T00:00:00Z
main_date_str 2025
publishDate 2025
record_format qdc
source_str_mv jyx
spellingShingle Köykkä, Jenni How does perception efficiency influence optimal foraging? individual-based modeling IBMs mathematical framework optimal foraging theory spatio-temporal point processes Ekologia ja evoluutiobiologia Ecology and evolutionary biology matemaattiset mallit simulointi
title How does perception efficiency influence optimal foraging?
title_full How does perception efficiency influence optimal foraging?
title_fullStr How does perception efficiency influence optimal foraging? How does perception efficiency influence optimal foraging?
title_full_unstemmed How does perception efficiency influence optimal foraging? How does perception efficiency influence optimal foraging?
title_short How does perception efficiency influence optimal foraging?
title_sort how does perception efficiency influence optimal foraging
title_txtP How does perception efficiency influence optimal foraging?
topic individual-based modeling IBMs mathematical framework optimal foraging theory spatio-temporal point processes Ekologia ja evoluutiobiologia Ecology and evolutionary biology matemaattiset mallit simulointi
topic_facet Ecology and evolutionary biology Ekologia ja evoluutiobiologia IBMs individual-based modeling matemaattiset mallit mathematical framework optimal foraging theory simulointi spatio-temporal point processes
url https://jyx.jyu.fi/handle/123456789/101091 http://www.urn.fi/URN:NBN:fi:jyu-202503272907
work_keys_str_mv AT köykkäjenni howdoesperceptionefficiencyinfluenceoptimalforaging